[1] SALVADOR R P, CAVALARO S H P, SEGURA I, et al. Early age hydration of cement pastes with alkaline and alkali-free accelerators for sprayed concrete[J]. Construction and Building Materials, 2016, 111: 386-398. [2] XU Q, STARK J. Early hydration of ordinary Portland cement with an alkaline shotcrete accelerator[J]. Advances in Cement Research, 2005, 17(1): 1-8. [3] 宋敬亮. 喷射混凝土用高性能速凝剂的研制与应用[D]. 邯郸: 河北工程大学, 2013. SONG J L. Development and application of high performance accelerator for shotcrete[D]. Handan: Hebei University of Engineering, 2013 (in Chinese). [4] 赵 爽, 洪锦祥, 乔 敏, 等. 早强型喷射混凝土在郑万高铁巫山隧道中的施工试验[J]. 隧道建设, 2020, 40(增刊1): 369-373. ZHAO S, HONG J X, QIAO M, et al. Construction test of early strength shotcrete in Wushan Tunnel of Zhengzhou-Wanzhou High-Speed Railway[J]. Tunnel Construction, 2020, 40(supplenment 1): 369-373 (in Chinese). [5] XU G W, HE C, WANG J, et al. Study on the damage evolution of secondary tunnel lining in layered rock stratum[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(7): 3533-3557. [6] KHOOSHECHIN M, TANZADEH J. Experimental and mechanical performance of shotcrete made with nanomaterials and fiber reinforcement[J]. Construction and Building Materials, 2018, 165: 199-205. [7] 仇 影, 倪 锐. 喷射混凝土用无碱液体速凝剂的制备及其 机理研究[J]. 硅酸盐通报, 2020, 39(7): 2113-2119. QIU Y, NI R. Study on preparation and mechanism of alkali-free liquid accelerator for sprayed concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2113-2119 (in Chinese). [8] 高瑞军, 郭君华, 林泽坚, 等. 纳米材料与无碱速凝剂的相容性及协同机理研究[J]. 功能材料, 2021, 52(12): 12090-12094. GAO R J, GUO J H, LIN Z J, et al. Study on the compatibility and synergistic mechanism of nanomaterials and alkali-free accelerators[J]. Functional materials, 2021, 52 (12):12090-12094 (in Chinese). [9] PATEL A S, RATHOD H, SHARMA N. An overview on application of nanotechnology in construction industry[J]. International Journal of Innovative Research in Science, Engineering and Technology, 2013, 2(11): 6094-6098. [10] 刘力铭. 微纳米气泡与矿物颗粒的多相界面作用研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. LIU L M. Study on multiphase interfacial interaction between micro-nano bubbles and mineral particles[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). [11] 张 优, 范文宏, 李嘉尧, 等. 氢气纳米气泡水对大型溞毒性效应的影响[J]. 环境工程, 2019, 37(11): 110-118. ZHANG Y, FAN W H, LI J Y, et al. Influence of hydrogen nanobubble water on toxic effect of daphnia magna[J]. Environmental Engineering, 2019, 37(11): 110-118 (in Chinese). [12] 邢 帆, 王恩振, 吴兴国, 等. 纳米气泡水与沼液联合浸泡对水稻秸秆厌氧产气性能的影响[J]. 可再生能源, 2024, 42(5): 587-591. XING F, WANG E Z, WU X G, et al. Effect of combined soaking with nanobubble water and biogas slurry on the biogas production performance of rice straw[J]. Renewable Energy Resources, 2024, 42(5): 587-591 (in Chinese). [13] YAHYAEI B, ASADOLLAHFARDI G, SALEHI A M. Study of using micro-nano bubble to improve workability and durability of self-compact concrete[J]. Structural Concrete, 2022, 23(1): 579-592. [14] 罗作球, 胡宇博, 何廷树, 等. 微纳米气泡水对砂浆力学、收缩性能的影响[J]. 混凝土与水泥制品, 2024(4): 16-20. LUO Z Q, HU Y B, HE T S, et al. The effect of micro-nano bubble water on the mechanical and shrinkage properties of mortar[J]. Concrete and cement products, 2024(4): 16-20 (in Chinese). [15] TUSHMANLO A S, TUSHMANLO H S, ASADOLLAHFARDI G, et al. Applications of micro-nanobubble and its influence on concrete properties: an in-depth review[J]. Nanotechnology Reviews, 2024, 13(1): 0068. [16] KHOSHROO M, SHIRZADI JAVID A A, KATEBI A. Effects of micro-nano bubble water and binary mineral admixtures on the mechanical and durability properties of concrete[J]. Construction and Building Materials, 2018, 164: 371-385. [17] ASADOLLAHFARDI G, MOHSENZADEH P, SAGHRAVANI S F, et al. The effects of using metakaolin and micro-nanobubble water on concrete properties[J]. Journal of Building Engineering, 2019, 25: 100781. [18] 田正宏, 焦新宸, 杨韩刚, 等. 纳米气泡水拌合混凝土的性能试验研究[J]. 建筑材料学报, 2020, 23(2): 279-285. TIAN Z H, JIAO X C, YANG H G, et al. Proporties of concrete mixed by nano-bubble water[J]. Journal of Building Materials, 2020, 23(2): 279-285 (in Chinese). [19] ZHOU G, CHENG W M, CAO S. Development of a new type of alkali-free liquid accelerator for wet shotcrete in coal mine and its engineering application[J]. Advances in Materials Science and Engineering, 2015, 2015(1): 813052. [20] HERRERA-MESEN C, SALVADOR R P, CAVALARO S H P, et al. Effect of gypsum content in sprayed cementitious matrices: early age hydration and mechanical properties[J]. Cement and Concrete Composites, 2019, 95: 81-91. [21] WAN Z M, HE T S, MA X D, et al. Research on the synergy of micro-nano bubble water and alkali-free liquid accelerator to improve the early strength and hydration rate of cement[J]. Journal of Building Engineering, 2022, 57: 104909. [22] AHMAD S, ASSAGGAF R A, MASLEHUDDIN M, et al. Effects of carbonation pressure and duration on strength evolution of concrete subjected to accelerated carbonation curing[J]. Construction and Building Materials, 2017, 136: 565-573. [23] TAKAHASHI M, ISHIKAWA H, ASANO T, et al. Effect of microbubbles on ozonized water for photoresist removal[J]. The Journal of Physical Chemistry C, 2012, 116(23): 12578-12583. [24] SHEIKH HASSANI M, TORKI A, ASADOLLAHFARDI G, et al. The effect of water to cement ratio and age on the mechanical properties of cement mortar and concrete made of micro-nano bubbles without adding any admixtures[J]. Structural Concrete, 2019, 22: E756-E768. [25] PLANK J, ZHANG P M, IVLEVA N, et al. Stability of single phase C3A hydrates against pressurized CO2[J]. Construction and Building Materials,2016, 122: 426-434. [26] 李永健. 体相微纳米气泡的生成及特性表征研究[D]. 西安: 西安建筑科技大学, 2020. LI Y J. Study on formation and characterization of bulk micro-nano bubbles[D]. Xi’an: Xi’an University of Architecture and Technology, 2020 (in Chinese). [27] SHAH V, BISHNOI S. Analysis of pore structure characteristics of carbonated low-clinker cements[J]. Transport in Porous Media, 2018, 124(3): 861-881. [28] 熊二刚, 巩忠文, 罗佳明, 等. 基于数字图像相关技术的钢筋混凝土梁裂缝试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1094-1104. XIONG E G, GONG Z W, LUO J M, et al. Experiment on cracks in reinforced concrete beams based on digital image correlation technology[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(4): 1094-1104 (in Chinese). [29] ZHANG X, ZHANG H, GAO H, et al. Effect of bubble feature parameters on rheological properties of fresh concrete[J]. Construction and Building Materials, 2019, 196: 245-255. [30] GUAN X M, LIU S H, FENG C H, et al. The hardening behavior of γ-C2S binder using accelerated carbonation[J]. Construction and Building Materials, 2016, 114(6): 204-207. [31] 刘志浩. 硅酸盐水泥水化诱导期的作用机理研究[D]. 广州: 广州大学, 2023. LIU Z H. Study on the mechanism of Portland cement hydration induction period[D]. Guangzhou: Guangzhou University, 2023 (in Chinese). [32] MANZANO H, DURGUN E, LÓPEZ-ARBELOA I, et al. Insight on tricalcium silicate hydration and dissolution mechanism from molecular simulations[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14726-14733. [33] POURCHEZ J, GROSSEAU P, RUOT B. Changes in C3S hydration in the presence of cellulose ethers[J]. Cement and Concrete Research, 2010, 40(2): 179-188. [34] 李超凡. 基于CO2改性泡沫混凝土的制备与性能研究[D]. 合肥: 安徽建筑大学, 2023. LI C F. Study on preparation and properties of CO2-modified foamed concrete[D]. Hefei: Anhui University of Architecture and Architecture, 2023 (in Chinese). [35] KASHEF-HAGHIGHI S, SHAO Y X, GHOSHAL S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing[J]. Cement and Concrete Research, 2015, 67: 1-10. [36] ZHANG Y J, ZHANG X. Research on effect of limestone and gypsum on C3A, C3S and PC clinker system[J]. Construction and Building Materials, 2007, 22(8): 1634-1642. |