[1] TAYLOR H F W. Cement chemistry[M]. 2nd ed. London: Thomas Telford Publishing, 1997. [2] 金 英. 超硫酸盐水泥制备高性能混凝土的研究与应用[D]. 武汉: 武汉工程大学, 2017. JIN Y. Research and application of super sulphate cement preparation of high performance concrete[D]. Wuhan: Wuhan Institute of Technology, 2017 (in Chinese). [3] 高育欣, 余保英, 徐芬莲, 等. 超硫酸盐水泥在国内外的研究与应用现状[C]//2011年混凝土与水泥制品学术讨论会论文集. 无锡, 2011: 235-241. GAO Y X, YU B Y, XU F L, et al. Research and application status of supersulfate cement at home and abroad[C]//Proceedings of the 2011 Academic Symposium on Concrete and Cement Products. Wuxi, 2011: 235-241 (in Chinese). [4] DAXNER-HÖCK G. Die wirbeltierfauna aus dem Alt-Pliozän (O-Pannon) vom eichkogel bei mödling (NÖ.) III. Rodentia[J]. Annalen Des Naturhistorischen Museums in Wien, 1970, 74: 597-605. [5] 陆建鑫, 水中和, 田素芳, 等. 超硫酸盐水泥与波特兰水泥混凝土显微结构与性能的比较研究[J]. 武汉理工大学学报, 2013, 35(5): 1-7. LU J X, SHUI Z H, TIAN S F, et al. Investigation of the microstructure and property for supersulphated cement concrete and the Portland cement concrete[J]. Journal of Wuhan University of Technology, 2013, 35(5): 1-7 (in Chinese). [6] 李 磊. 冶金渣在超硫酸盐水泥中的应用及其增强机理研究[D]. 武汉: 武汉理工大学, 2010. LI L. Research of enhance mechanism and application on supersulphated cement using metallurgical slag[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). [7] 余保英, 高育欣, 王 军. 含不同石膏种类的超硫酸盐水泥的水化行为[J]. 建筑材料学报, 2014, 17(6): 965-971. YU B Y, GAO Y X, WANG J. Hydration behavior of super sulphated cement with different types of gypsum[J]. Journal of Building Materials, 2014, 17(6): 965-971 (in Chinese). [8] 赵青林, 周明凯, FISCHER H, 等. 超硫酸盐水泥在德国的研究与应用[J]. 新世纪水泥导报, 2008, 14(6): 5-10+25. ZHAO Q L, ZHOU M K, FISCHER H, et al. Research and application of supersuiphated cement in Germany[J]. Cement Guide for New Epoch, 2008, 14(6): 5-10+25 (in Chinese). [9] 张鸿宇, 周 丽, 张希良. 我国现代煤化工产业现状及政策综述[J]. 现代化工, 2018, 38(5): 1-5. ZHANG H Y, ZHOU L, ZHANG X L. Review on status and policy of China’s coal chemical industry[J]. Modern Chemical Industry, 2018, 38(5): 1-5 (in Chinese). [10] 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193. QU J S, ZHANG J B, SUN Z G, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1): 184-193 (in Chinese). [11] 王殿生. 大型煤气化技术的研究与发展[J]. 化工设计通讯, 2018, 44(2): 11. WANG D S. Research and development of large coal gasification technology[J]. Chemical Engineering Design Communications, 2018, 44(2): 11 (in Chinese). [12] 赵利杰, 张 彤, 黄 伟, 等. 煤气化粗渣-矿渣基地质聚合物的制备与性能[J]. 硅酸盐通报, 2022, 41(10): 3542-3547. ZHAO L J, ZHANG T, HUANG W, et al. Preparation and properties of coal gasification coarse slag-blast furnace slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3542-3547 (in Chinese). [13] 帅 航, 尹洪峰, 袁蝴蝶, 等. 煤气化炉渣的高温物相组成演变与黏温特性[J]. 煤炭转化, 2015, 38(3): 44-48. SHUAI H, YIN H F, YUAN H D, et al. Phase composition evolution and viscosity-temperature characteristics of gasification slags at high temperature[J]. Coal Conversion, 2015, 38(3): 44-48 (in Chinese). [14] MATJIE R H, LI Z S, WARD C R, et al. Chemical composition of glass and crystalline phases in coarse coal gasification ash[J]. Fuel, 2008, 87(6): 857-869. [15] 马旭东, 李 辉, 吴 锋, 等. 高盐废水对Ca(OH)2激发煤气化炉渣基胶凝材料力学性能的影响机理[J]. 材料科学与工程学报, 2022, 40(1): 83-87+147. MA X D, LI H, WU F, et al. Mechanism of high-salt wastewater on mechanical properties of Ca(OH)2 activated coal gasification slag based cementitious materials[J]. Journal of Materials Science and Engineering, 2022, 40(1): 83-87+147 (in Chinese). [16] 尹洪峰, 汤 云, 任 耘, 等. 气化炉渣合成Ca-α-Sialon-SiC复相陶瓷[J]. 硅酸盐学报, 2011, 39(2): 233-238. YIN H F, TANG Y, REN Y, et al. Synthesis of Ca-α-sialon-SiC multiphase ceramics using gasification slag[J]. Journal of the Chinese Ceramic Society, 2011, 39(2): 233-238 (in Chinese). [17] 贺行洋, 张 晨, 苏 英, 等. 大掺量矿渣-水泥复合胶凝材料体系的性能研究[J]. 混凝土, 2019(9): 83-87. HE X Y, ZHANG C, SU Y, et al. Properties of cement pastes containing high volume granulated blast furnace slag(GBFS)[J]. Concrete, 2019(9): 83-87 (in Chinese). [18] 盛燕萍, 扈培臻, 冀 欣, 等. 粉磨时间对煤气化渣复合胶凝材料的性能影响研究[J]. 应用化工, 2020, 49(8): 1999-2003. SHENG Y P, HU P Z, JI X, et al. Study on the effect of pulverizing time on the properties of coal gasification slag composite cementitious material[J]. Applied Chemical Industry, 2020, 49(8): 1999-2003 (in Chinese). [19] LIU Y Y, LEI S M, LIN M, et al. Assessment of pozzolanic activity of calcined coal-series kaolin[J]. Applied Clay Science, 2017, 143: 159-167. [20] DEHGHANI A, ASLANI F, GHAEBI PANAH N. Effects of initial SiO2/Al2O3 molar ratio and slag on fly ash-based ambient cured geopolymer properties[J]. Construction and Building Materials, 2021, 293: 123527. [21] HEIKAL M, NASSAR M Y, EL-SAYED G, et al. Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag[J]. Construction and Building Materials, 2014, 69: 60-72. [22] ISMAIL I, BERNAL S A, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Composites, 2014, 45: 125-135. [23] PHAIR J W, VAN DEVENTER J S J. Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers[J]. International Journal of Mineral Processing, 2002, 66(1/2/3/4): 121-143. [24] 郭 伟. 煤矸石的活性激发及活性评价方法的探讨[D]. 南京: 南京工业大学, 2005. GUO W. Research on coal gangue activation and its activity evaluation method[D]. Nanjing: Nanjing University of Technology, 2005 (in Chinese). [25] FERNANDEZ-JIMENEZ G L P. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O[J]. Cement and Concrete Research, 2011, 41(9): 923-931. [26] LANCELLOTTI I, CATAURO M, PONZONI C, et al. Inorganic polymers from alkali activation of metakaolin: effect of setting and curing on structure[J]. Journal of Solid State Chemistry, 2013, 200: 341-348. [27] 朋改非, 王金羽, CHAN Y N S, 等. 火灾高温下硬化水泥浆的化学分解特征[J]. 南京信息工程大学学报(自然科学版), 2009, 1(1): 76-81. PENG G F, WANG J Y, CHAN Y N S, et al. Chemical decomposition characteristics of hardened cement paste subjected to high temperature of fire[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2009, 1(1): 76-81 (in Chinese). [28] 杨南如, 岳文海. 无机非金属材料图谱手册[M]. 武汉: 武汉工业大学出版社, 2000: 245-267. YANG N R, YUE W H. The handbook of inorganic matalloid materials atlas[M]. Wuhan: Wuhan University of Technology Press, 2000: 245-267 (in Chinese). [29] 马宏强. 碱激发煤矸石-矿渣胶凝材料性能与混凝土耐久性能研究[D]. 北京: 中国矿业大学(北京), 2021. MA H Q. Study on performance of alkali-activated coal gangue-slag cementitious materials and durability of concrete[D]. Beijing: China University of Mining & Technology, Beijing, 2021 (in Chinese). [30] CHEN J J, SORELLI L, VANDAMME M, et al. A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: evidence for C-S-H/Ca(OH)2 nanocomposites[J]. Journal of the American Ceramic Society, 2010, 93(5): 1484-1493. [31] 刘 新, 冯 攀, 沈叙言, 等. 水泥水化产物: 水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167. LIU X, FENG P, SHEN X Y, et al. Advances in the understanding of cement hydrate—calcium silicate hydrate (C-S-H)[J]. Materials Reports, 2021, 35(9): 9157-9167 (in Chinese). [32] MELO NETO A A, CINCOTTO M A, REPETTE W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement[J]. Cement and Concrete Research, 2008, 38(4): 565-574. [33] CARTWRIGHT C, RAJABIPOUR F, RADLIŃSKA A. Shrinkage characteristics of alkali-activated slag cements[J]. Journal of Materials in Civil Engineering, 2015, 27(7): B4014007. [34] 马宏强, 易 成, 陈宏宇, 等. 碱激发煤矸石-矿渣胶凝材料的性能和胶结机理[J]. 材料研究学报, 2018, 32(12): 898-904. MA H Q, YI C, CHEN H Y, et al. Property and cementation mechanism of alkali-activated coal gangue-slag cementitious materials[J]. Chinese Journal of Materials Research, 2018, 32(12): 898-904 (in Chinese). |