[1] SILVA L F O, OLIVEIRA M L S, CRISSIEN T J, et al. A review on the environmental impact of phosphogypsum and potential health impacts through the release of nanoparticles[J]. Chemosphere, 2022, 286: 131513. [2] LIANG Y S, GUAN B, CAO T W, et al. Study on the properties of an excess-sulphate phosphogypsum slag cement stabilized base-course mixture containing phosphogypsum-based artificial aggregate[J]. Construction and Building Materials, 2023, 409: 134095. [3] REN Z S, WANG L, WANG H, et al. Synergistic solidification/stabilization mechanism of cadmium in phosphogypsum slag-based cementitious material[J]. Construction and Building Materials, 2023, 400: 132802. [4] 陈雪梅. 磷建筑石膏在碱性环境中的水化硬化和微结构调控研究[D]. 南京: 东南大学, 2021: 7-10. CHEN X M. Study on the hydration-hardening mechanism and microstructure regulation of hemihydrate phosphgypsum under alkaline condition[D]. Nanjing: Southeast University, 2021: 7-10 (in Chinese). [5] 李文杰. 过硫磷石膏胶凝材料的性能研究[D]. 武汉: 武汉理工大学, 2013: 1-2. LI W J. Study on properties of persulfite gypsum cementitious material[D]. Wuhan: Wuhan University of Technology, 2013: 1-2 (in Chinese). [6] 林宗寿, 黄 赟. 磷石膏基免煅烧水泥的开发研究[J]. 武汉理工大学学报, 2009, 31(4): 53-55+62. LIN Z S, HUANG Y. Investigation on phosphogypsum-base non-calcined cement[J]. Journal of Wuhan University of Technology, 2009, 31(4): 53-55+62 (in Chinese). [7] PRATAP B, MONDAL S, HANUMANTHA R B. Development of geopolymer concrete using fly ash and phosphogypsum as a pavement composite material[J]. Materials Today: Proceedings, 2023, 93: 35-40. [8] 水中和, 吴赤球, 孙 涛, 等. 过硫磷石膏矿渣水泥混凝土的研究与应用进展[J]. 混凝土与水泥制品, 2021(2): 97-100. SHUI Z H, WU C Q, SUN T, et al. Research and application progress of excess-sulfate phosphogypsum slag cement concrete[J]. China Concrete and Cement Products, 2021(2): 97-100 (in Chinese). [9] RASHAD A M. Phosphogypsum as a construction material[J]. Journal of Cleaner Production, 2017, 166: 732-743. [10] WANG Z Y, SHUI Z H, LI Z W, et al. Hydration characterization of Mg2+ blended excess-sulphate phosphogypsum slag cement system during early age[J]. Construction and Building Materials, 2022, 345: 128191. [11] WANG Z Y, SHUI Z H, SUN T, et al. An eco-friendly phosphogypsum-based cementitious material: performance optimization and enhancing mechanisms[J]. Frontiers in Physics, 2022, 10: 892037. [12] WANG Z Y, SHUI Z H, SUN T, et al. Recycling utilization of phosphogypsum in eco excess-sulphate cement: synergistic effects of metakaolin and slag additives on hydration, strength and microstructure[J]. Journal of Cleaner Production, 2022, 358: 131901. [13] HERRERA-MESEN C, SALVADOR R P, IKUMI T, et al. External sulphate attack of sprayed mortars with sulphate-resisting cement: influence of accelerator and age of exposition[J]. Cement and Concrete Composites, 2020, 114: 103614. [14] HAN J G, WANG K J, SHI J Y, et al. Influence of sodium aluminate on cement hydration and concrete properties[J]. Construction and Building Materials, 2014, 64: 342-349. [15] GIJBELS K, NGUYEN H, KINNUNEN P, et al. Feasibility of incorporating phosphogypsum in ettringite-based binder from ladle slag[J]. Journal of Cleaner Production, 2019, 237: 117793. [16] LIU S H, WANG L, YU B Y. Effect of modified phosphogypsum on the hydration properties of the phosphogypsum-based supersulfated cement[J]. Construction and Building Materials, 2019, 214: 9-16. [17] SALVADOR R P, CAVALARO S H P, CINCOTTO M A, et al. Parameters controlling early age hydration of cement pastes containing accelerators for sprayed concrete[J]. Cement and Concrete Research, 2016, 89: 230-248. [18] 刘源涛, 王琰帅, 董必钦. 偏铝酸钠激发石灰石粉的胶凝材料合成机理研究[J]. 材料导报, 2023, 37(1): 91-95. LIU Y T, WANG Y S, DONG B Q. Synthesis mechanisms of sodium metaaluminate-activated limestone-based cementitious material[J]. Materials Reports, 2023, 37(1): 91-95 (in Chinese). [19] GAVIRIA X, BORRACHERO M V, PAYÁ J, et al. Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TG)[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(1): 39-46. [20] 张文生, 张金山, 叶家元, 等. 合成条件对钙矾石形貌的影响[J]. 硅酸盐学报, 2017, 45(5): 631-638. ZHANG W S, ZHANG J S, YE J Y, et al. Influence of synthesis conditions on morphology of ettringite[J]. Journal of the Chinese Ceramic Society, 2017, 45(5): 631-638 (in Chinese). [21] LIU Y T, ZHANG Y Y, DONG B Q, et al. Limestone powder activated by sodium aluminate: hydration and microstructure[J]. Construction and Building Materials, 2023, 368: 130446. [22] LIU T, YU Q L, BROUWERS H J H. In-situ formation of layered double hydroxides (LDHs) in sodium aluminate activated slag: the role of Al-O tetrahedra[J]. Cement and Concrete Research, 2022, 153: 106697. [23] WALKLEY B, SAN NICOLAS R, SANI M A, et al. Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors[J]. Cement and Concrete Research, 2016, 89: 120-135. [24] LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary cementitious materials[J]. Cement and Concrete Research, 2011, 41(12): 1244-1256. [25] JUENGER M C G, SNELLINGS R, BERNAL S A. Supplementary cementitious materials: new sources, characterization, and performance insights[J]. Cement and Concrete Research, 2019, 122: 257-273. [26] SKIBSTED J, SNELLINGS R. Reactivity of supplementary cementitious materials (SCMs) in cement blends[J]. Cement and Concrete Research, 2019, 124: 105799. |