硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (8): 2912-2923.
柯国鹏1, 徐浩2, 杨如柱3, 陈智斌1, 董淑玉3, 庄官政1, 曾武3, 李耀晃3, 刘敬勇1, 钟胜1, 杨佐毅1, 李磊1
收稿日期:
2023-12-26
修订日期:
2024-04-10
出版日期:
2024-08-15
发布日期:
2024-08-12
通信作者:
刘敬勇,博士,教授。E-mail:Liujy@gdut.edu.cn
作者简介:
柯国鹏(2001—),男,硕士研究生。主要从事污染土处置及资源化利用的研究。E-mail:1457931605@qq.com
基金资助:
KE Guopeng1, XU Hao2, YANG Ruzhu3, CHEN Zhibin1, DONG Shuyu3, ZHUANG Guanzheng1, ZENG Wu3, LI Yaohuang3, LIU Jingyong1, ZHONG Sheng1, YANG Zuoyi1, LI Lei1
Received:
2023-12-26
Revised:
2024-04-10
Online:
2024-08-15
Published:
2024-08-12
摘要: 当前存在大量的固体废物得不到妥善处理,而利用固体废物来烧结陶粒符合可持续发展理念,是一种可行的资源化方式。本文首先阐述了三种典型固废烧结陶粒工艺过程的差异以及烧结过程中的一些关键工艺;其次,分析了产品陶粒中七种重金属Cr、Zn、Cu、Cd、Ni、Pb和As在上述烧结过程中的固定与挥发过程,并总结了可能影响这一过程的六种因素;最后,总结了陶粒产品在混凝土、水处理、吸声材料和陶粒支撑剂等四个主要领域以及其他新兴方向的研究和应用现状,并提出了当前陶粒重金属迁移固化以及陶粒研究应用存在的一些问题和展望,为固废烧结制备陶粒过程及后续陶粒产品使用中的重金属污染防控提供参考。
中图分类号:
柯国鹏, 徐浩, 杨如柱, 陈智斌, 董淑玉, 庄官政, 曾武, 李耀晃, 刘敬勇, 钟胜, 杨佐毅, 李磊. 典型固废基烧结陶粒工艺、重金属转化行为及其应用现状分析[J]. 硅酸盐通报, 2024, 43(8): 2912-2923.
KE Guopeng, XU Hao, YANG Ruzhu, CHEN Zhibin, DONG Shuyu, ZHUANG Guanzheng, ZENG Wu, LI Yaohuang, LIU Jingyong, ZHONG Sheng, YANG Zuoyi, LI Lei. Process, Heavy Metal Transformation Behavior of Typical Solid Waste-Based Sintering Ceramsite and Its Application Status Analysis[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(8): 2912-2923.
[1] 中国再生资源回收利用协会. 2020年全国大、中城市固体废物污染环境防治年报[J]. 中国资源综合利用, 2021, 39(1): 4. China Resources Recycling Association. Annual report on prevention and control of environmental pollution by solid waste in large and medium-sized cities in China in 2020[J]. China Resources Comprehensive Utilization, 2021, 39(1): 4 (in Chinese). [2] YU L H, ZHANG Y Y, LIU H L, et al. Comprehensive utilization of blast furnace slag, municipal sludge and kaolin clay in building brick manufacture: crystalline transformation, morphology observation and property assessment[J]. Cement and Concrete Composites, 2024, 145: 105337. [3] SUN J J, HU Y, GUAN M F, et al. Research progress in the application of bulk solid waste in the field of flame retardation[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111505. [4] XIAO Y D, JIN H X, WANG M L, et al. Collaborative utilization status of red mud and phosphogypsum: a review[J]. Journal of Sustainable Metallurgy, 2022, 8(4): 1422-1434. [5] CHEN H T, WANG X Y, LIANG H B, et al. Characterization and treatment of oily sludge: a systematic review[J]. Environmental Pollution, 2024, 344: 123245. [6] WANG S Y, LIU B, ZHANG Q, et al. Application of geopolymers for treatment of industrial solid waste containing heavy metals: state-of-the-art review[J]. Journal of Cleaner Production, 2023, 390: 136053. [7] LIU Z, GUO R X, PAN T H, et al. Preparation of ceramsite from low-silicon red mud (LSRM): effects of Si-Al ratio and sintering temperature[J]. Ceramics International, 2023, 49(21): 34191-34204. [8] 郑伍魁, 赵 丹, 朱 毅, 等. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 102-113. ZHENG W K, ZHAO D, ZHU Y, et al. Trend analysis and research progress of ceramsite engineering application[J]. Materials Reports, 2023, 37(7): 102-113 (in Chinese). [9] FENG J T, BURKE I T, CHEN X H, et al. Assessing metal contamination and speciation in sewage sludge: implications for soil application and environmental risk[J]. Reviews in Environmental Science and Bio/Technology, 2023, 22(4): 1037-1058. [10] 冯玉林, 高 鸽, 柴喜林, 等. 城市污泥尾矿陶粒的制备工艺及其性能与应用[J]. 硅酸盐通报, 2023, 42(4): 1374-1383. FENG Y L, GAO G, CHAI X L, et al. Preparation process of municipal sludge tailing ceramsite and its performance and application[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1374-1383 (in Chinese). [11] 罗立群, 涂 序, 周鹏飞. 湖泥陶粒的制备及重金属固化研究[J]. 硅酸盐通报, 2019, 38(11): 3397-3402+3408. LUO L Q, TU X, ZHOU P F. Preparation and heavy metals solidification of ceramsite from lake mud[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3397-3402+3408 (in Chinese). [12] MI H C, YI L S, WU Q, et al. Preparation of high-strength ceramsite from red mud, fly ash, and bentonite[J]. Ceramic International, 2021 [13] WANG H X, XU J L, LIU Y Q, et al. Preparation of ceramsite from municipal sludge and its application in water treatment: a review[J]. Journal of Environmental Management, 2021, 287: 112374. [14] XU G R, ZOU J L, LI G B. Effect of sintering temperature on the characteristics of sludge ceramsite[J]. Journal of Hazardous Materials, 2008, 150(2): 394-400. [15] 刘亚东, 杨鼎宜, 贾宇婷, 等. 超轻污泥陶粒的研制及其内部结构特征分析[J]. 混凝土, 2014(6): 65-68. LIU Y D, YANG D Y, JIA Y T, et al. Preparation of ultra-lightweight sludge ceramsite and analysis of its inner-structure characteristics[J]. Concrete, 2014(6): 65-68 (in Chinese). [16] 张晓亚, 李佳丽, 冯丽娟, 等. 城市污泥陶粒制备技术与应用研究进展[J]. 无机盐工业, 2022, 54(9): 28-38. ZHANG X Y, LI J L, FENG L J, et al. Research progress on preparation technology and application of municipal sludge ceramsite[J]. Inorganic Chemicals Industry, 2022, 54(9): 28-38 (in Chinese). [17] SARATHCHANDRA S S, RENGEL Z, SOLAIMAN Z M. A review on remediation of iron ore mine tailings via organic amendments coupled with phytoremediation[J]. Plants, 2023, 12(9): 1871. [18] 邢芩瑞, 马 远, 李 宇. 不同CaO源固废对钙长石全固废陶瓷矿相和性能的影响[J]. 有色金属科学与工程, 2021, 12(1): 39-48. XING Q R, MA Y, LI Y. Effect of CaO sources derived from different solid waste on the minerals and properties of prepared anorthite ceramics[J]. Nonferrous Metals Science and Engineering, 2021, 12(1): 39-48 (in Chinese). [19] 李彦龙, 徐明远, 房振全, 等. 污泥/菱镁尾矿/煤矸石陶粒制备工艺优化研究[J]. 环境工程, 2023, 41(增刊1): 404-409. LI Y L, XU M Y, FANG Z Q, et al. Study on optimization of preparation process of sludge/magnesite tailings/coal gangue ceramsite[J]. Environmental Engineering, 2023, 41(supplement 1): 404-409 (in Chinese). [20] 李育彪, 潘梦真, 蹇守卫, 等. 低硅铁尾矿制备轻质陶粒试验研究[J]. 矿产保护与利用, 2022, 42(6): 73-80. LI Y B, PAN M Z, JIAN S W, et al. Study on preparation of lightweight ceramsite with high blending capacity using low silicon iron tailings[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 73-80 (in Chinese). [21] GUO P H, ZHAO Z K, LI Y K, et al. Co-utilization of iron ore tailings and coal fly ash for porous ceramsite preparation: optimization, mechanism, and assessment[J]. Journal of Environmental Management, 2023, 348: 119273. [22] GU J R, LIU X M, ZHANG Z Q. Road base materials prepared by multi-industrial solid wastes in China: a review[J]. Construction and Building Materials, 2023, 373: 130860. [23] 周鹏飞. 炼铜尾渣-湖泊底泥复合陶粒制备及膨胀机理研究[D]. 武汉: 武汉理工大学, 2020. ZHOU P F. Study on the preparation and expansion mechanism of copper slag-lake mud ceramsite[D]. Wuhan: Wuhan University of Technology, 2020 (in Chinese). [24] 闫红利. 利用工业废渣制备重质陶粒及其在混凝土中的应用研究[J]. 混凝土世界, 2022(3): 64-68. YAN H L. Study on preparation of heavy ceramsite from industrial waste residue and its application in concrete[J]. China Concrete, 2022(3): 64-68 (in Chinese). [25] CHAI Y F, HU W X, ZHANG Y H, et al. Process and property optimization of ceramsite preparation by Bayan Obo tailings and blast furnace slag[J]. Journal of Iron and Steel Research International, 2023, 30(7): 1381-1389. [26] 赵鸣宇. 粉煤灰制备陶粒支撑剂过程中重金属元素迁移转化规律研究[D]. 南京: 东南大学, 2022. ZHAO M Y. Study on the migration and transformation of heavy metal elements in the process of preparing ceramic proppant from fly ash[D]. Nanjing: Southeast University, 2022 (in Chinese). [27] HAN J, XU M H, YAO H, et al. Influence of calcium chloride on the thermal behavior of heavy and alkali metals in sewage sludge incineration[J]. Waste Management, 2008, 28(5): 833-839. [28] LI C M, SONG B, CHEN Z L, et al. Immobilization of heavy metals in ceramsite prepared using contaminated soils: effectiveness and potential mechanisms[J]. Chemosphere, 2023, 310: 136846. [29] SHAO Y Y, SHAO Y Q, ZHANG W Y, et al. Preparation of municipal solid waste incineration fly ash-based ceramsite and its mechanisms of heavy metal immobilization[J]. Waste Management, 2022, 143: 54-60. [30] LI Y L, XU M Y, LI Q, et al. Study on the properties and heavy metal solidification characteristics of sintered ceramsites composed of magnesite tailings, sewage sludge, and coal gangue[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 11128. [31] SHAO Y Y, TIAN C, KONG W J, et al. Co-utilization of zinc contaminated soil and red mud for high-strength ceramsite: preparation, zinc immobilization mechanism and environmental safety risks[J]. Process Safety and Environmental Protection, 2023, 170: 491-497. [32] 刘 薇. 电镀污泥烧制陶粒过程中典型重金属的迁移行为[D]. 北京: 北京化工大学, 2021. LIU W. Migration behavior of typical heavy metals during the firing of electroplated sludge into ceramic pellets[D]. Beijing: Beijing University of Chemical Technology, 2021 (in Chinese). [33] HUANG J L, CHU X, SHU Z F, et al. The effects of washing solvents on the properties of ceramsite and heavy metal immobilization via the cosintering of municipal solid waste incineration fly ash and Cr-containing waste glass[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109089. [34] 詹欣源. 生活垃圾焚烧飞灰与电解锰渣重金属协同稳定化机理及陶粒资源化研究[D]. 重庆: 重庆大学, 2020. ZHAN X Y. Co-stabilization mechanism of heavy metals in MSWI fly ash and electrolytic manganese residue and ceramisite reutilization research[D]. Chongqing: Chongqing University, 2020 (in Chinese). [35] CHEN L M, LIAO Y F, MA X Q. Heavy metals volatilization characteristics and risk evaluation of co-combusted municipal solid wastes and sewage sludge without and with calcium-based sorbents[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109370. [36] ZHANG X, TANG J Y, CHEN J, et al. Migration and transformation of sulfur and zinc during high-temperature flue gas pyrolysis of waste tires[J]. Journal of Cleaner Production, 2023, 410: 137238. [37] 李晶晶. 电镀污泥烧制陶粒过程中典型重金属的挥发特性[D]. 北京: 北京化工大学, 2022. LI J J. Volatilization characteristics of typical heavy metals during ceramsites sintering from electroplating sludge[D]. Beijing: Beijing University of Chemical Technology, 2022 (in Chinese). [38] LUO Z T, GUO J Y, LIU X H, et al. Preparation of ceramsite from lead-zinc tailings and coal gangue: physical properties and solidification of heavy metals[J]. Construction and Building Materials, 2023, 368: 130426. [39] 徐明远. 菱镁尾矿污泥陶粒的制备及其重金属固化特性研究[D]. 沈阳: 沈阳航空航天大学, 2022. XU M Y. Study on preparation of magnesite tailings sludge ceramsite and its solidification characteristics of heavy metals[D]. Shenyang: Shenyang Aerospace University, 2022 (in Chinese). [40] 范圣轩, 叶恒棣, 刘学玲, 等. 钢铁厂铬泥高温焚烧重金属形态分布及其环境风险评价[J]. 烧结球团, 2023, 48(3): 7-13+105. FAN S X, YE H D, LIU X L, et al. Morphological distribution of heavy metals of chrome sludge in high-temperature incineration in iron and steel works and its environmental risk assessment[J]. Sintering and Pelletizing, 2023, 48(3): 7-13+105 (in Chinese). [41] 田 磊, 赵 波, 韩 军, 等. 温度对高炉渣热处理垃圾焚烧飞灰过程中重金属迁移特性的影响[J]. 化工环保, 2023, 43(5): 658-667. TIAN L, ZHAO B, HAN J, et al. Effect of temperature on migration characteristics of heavy metals in thermal treatment of MSWI fly ash with blast furnace slag[J]. Environmental Protection of Chemical Industry, 2023, 43(5): 658-667 (in Chinese). [42] 陈 伟, 钱觉时, 刘 军, 等. 污水污泥页岩烧结制品的重金属固化与水环境浸出稳定性[J]. 硅酸盐学报, 2012, 40(10): 1420-1426. CHEN W, QIAN J S, LIU J, et al. Solidification and leaching stability of heavy metals in sintered products made of shale and sewage sludge[J]. Journal of the Chinese Ceramic Society, 2012, 40(10): 1420-1426 (in Chinese). [43] 杨晓伟. 危废基高强陶粒的制备及重金属稳定固化机理研究[D]. 济南: 齐鲁工业大学, 2021. YANG X W. Study on preparation of high strength ceramsite based on hazardous waste and mechanism of stable solidification of heavy metals[D]. Jinan: Qilu University of Technology, 2021 (in Chinese). [44] ZOU J, DAI Y, YU X L, et al. Structures and metal leachability of sintered sludge-clay ceramsite affected by raw material basicity[J]. Journal of Environmental Engineering, 2011, 137: 398-405. [45] 胡济民. 垃圾焚烧过程中重金属铅和铜迁移分布特性的研究[D]. 上海: 华东理工大学, 2018. HU J M. Study on the migration and distribution of Pb and Cu during the process of municipal solid waste incineration[D]. Shanghai: East China University of Science and Technology, 2018 (in Chinese). [46] XU G R, ZOU J L, LI G B. Stabilization/solidification of heavy metals in sludge ceramsite and leachability affected by oxide substances[J]. Environmental Science & Technology, 2009, 43(15): 5902-5907. [47] 殷鸿敏. 电镀污泥烧制陶粒过程中易挥发性金属的迁移与分布[D]. 北京: 华北电力大学, 2021. YIN H M. Migration and distribution of volatile metals in sintering ceramsite from electroplating sludge[D]. Beijing: North China Electric Power University, 2021 (in Chinese). [48] 张幸福. 污泥焚烧过程中铬等重金属的迁移转化特性研究[D]. 杭州: 浙江大学, 2015. ZHANG X F. Study on migration and transformation of chromium and other heavy metals during sewage sludge incineration[D]. Hangzhou: Zhejiang University, 2015 (in Chinese). [49] LI Q, ZHONG Z P, DU H R, et al. Influence of silica-aluminum materials on heavy metals release during paper sludge pyrolysis: experimental and theoretical studies[J]. Waste Management, 2023, 170: 177-192. [50] WANG G W, NING X N, LU X W, et al. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks[J]. Waste Management, 2019, 93: 112-121. [51] 舒天楚, 李彦龙, 方飞远, 等. 添加剂对污水污泥烧制陶粒轻骨料性能影响及其重金属毒性评价[J]. 燃烧科学与技术, 2019, 25(3): 274-282. SHU T C, LI Y L, FANG F Y, et al. Effects of additives on the material properties of lightweight aggregate from sewage sludge sintering and its toxicity evaluation of heavy metals[J]. Journal of Combustion Science and Technology, 2019, 25(3): 274-282 (in Chinese). [52] XU G R, ZOU J L, LI G B. Stabilization of heavy metals in sludge ceramsite[J]. Water Research, 2010, 44(9): 2930-2938. [53] 蹇守卫, 余后梁, 马保国, 等. 烧结对陶粒的性能及其重金属固化的影响[J]. 硅酸盐通报, 2018, 37(1): 103-109. JIAN S W, YU H L, MA B G, et al. Effect of sintering on the properties of ceramsite and the solidification of heavy metals[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 103-109 (in Chinese). [54] 余后梁. 污染土壤制备轻集料的性能及其重金属固化的研究[D]. 武汉: 武汉理工大学, 2018. YU H L. Research on properties of lightweight aggregate and solidification of heavy metals produced by contaminated soil[D]. Wuhan: Wuhan University of Technology, 2018 (in Chinese). [55] 景奕鸣. 电镀污泥固化制备陶粒的可行性研究[D]. 青岛: 青岛理工大学, 2019. JING Y M. Feasibility study on preparation of ceramsite by electroplating sludge[D]. Qingdao: Qingdao Tehcnology University, 2019 (in Chinese). [56] 石 秀. 铬污染土壤烧制轻集料的研究[D]. 重庆: 重庆大学, 2013. SHI X. Study on firing lightweight aggregate of chromium contaminated soil[D]. Chongqing: Chongqing University, 2013 (in Chinese). [57] LUAN J D, LI R D, ZHANG Z H, et al. Influence of chlorine, sulfur and phosphorus on the volatilization behavior of heavy metals during sewage sludge thermal treatment[J]. Waste Management & Research, 2013, 31(10): 1012-1018. [58] HU N Y, FU F H, LUO B Y, et al. Preparation, characterization and self-foaming mechanism of total-tailings-based foamed glass-ceramics[J]. Ceramics International, 2023, 49(19): 31881-31890. [59] 郝 恬. 电镀污泥烧制陶粒过程中铜和铬的挥发特性[D]. 北京: 北京化工大学, 2022. HAO T. The volatile properties of Cu and Cr during ceramsite firing from electroplating sludge[D]. Beijing: Beijing University of Chemical Technology, 2022 (in Chinese). [60] 赵 威, 曹宝月, 周春生, 等. 铁尾矿基轻质高强陶粒的制备及应用研究[J]. 非金属矿, 2022, 45(1): 71-73+77. ZHAO W, CAO B Y, ZHOU C S, et al. Study on preparation and application of light and high strength ceramsite based on iron tailings[J]. Non-Metallic Mines, 2022, 45(1): 71-73+77 (in Chinese). [61] MENG J, XU Z L, LIU Z L, et al. Experimental study on the mechanics and impact resistance of multiphase lightweight aggregate concrete[J]. Sustainability, 2022, 14(15): 9606. [62] ZHANG C, WANG G F, XU F J, et al. Ceramsite made from remediated soil: a risk assessment of its potential role serving as urban street cushion[J]. Bulletin of Environmental Contamination and Toxicology, 2023, 111(1): 15. [63] JIANG S X, RAO P, HUANG H G, et al. Performance of a ceramsite-enhanced gravity-driven ceramic membrane (GDCM) for simultaneous manganese ion and ammonia removal[J]. Journal of Cleaner Production, 2023, 389: 136082. [64] LIU C, HUANG X, YU J H, et al. Water supply sludge-based ceramsite denitrification filter: pollutant removal and microbial community characteristics[J]. Journal of Water Process Engineering, 2023, 55: 104229. [65] ZHENG Q, JI Q Y, TIAN T, et al. Preparation of ceramsite using solid residue from anaerobic digestion of waste activated sludge and its enhancing effect on catalytic ozonation[J]. Environmental Research, 2024, 243: 117745. [66] 钟嘉利, 罗居海, 陈孝娥. 污泥陶粒的制备及应用研究现状[J]. 全面腐蚀控制, 2023, 37(8): 71-74. ZHONG J L, LUO J H, CHEN X E. Preparation of sludge ceramide and its application research status[J]. Total Corrosion Control, 2023, 37(8): 71-74 (in Chinese). [67] 梁新健. 水泥基陶粒吸音材料性能优化及应用研究[D]. 柳州: 广西科技大学, 2022. LIANG X J. Optimization and application of cement-based ceramsite sound-absorbing materials[D]. Liuzhou: Guangxi University of Science and Technology, 2022 (in Chinese). [68] 罗 涛. 赤泥吸声陶粒的制备与性能研究[D]. 柳州: 广西科技大学, 2020. LUO T. Study on the preparation and properties of sound-absorbing cerasmite from red mud[D]. Liuzhou: Guangxi University of Science and Technology, 2020 (in Chinese). [69] 方宇飞, 丁冬海, 肖国庆, 等. 陶粒支撑剂的研究及应用进展[J]. 化工进展, 2022, 41(5): 2511-2525. FANG Y F, DING D H, XIAO G Q, et al. Progress in academic and application researches on ceramic proppant[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2511-2525 (in Chinese). [70] 郝惠兰, 田玉明, 秦 梅, 等. 烧结温度对添加镁渣制备陶粒支撑剂性能的影响[J]. 硅酸盐通报, 2019, 38(2): 367-370. HAO H L, TIAN Y M, QIN M, et al. Effect of sintering temperature on properties of ceramic proppants prepared by adding magnesium slag[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(2): 367-370 (in Chinese). [71] ZOU M J, YAO L L, ZHANG M, et al. Hydraulic fracture to enhance coalbed methane recovery by using coated ceramsite[J]. Greenhouse Gases: Science and Technology, 2022, 12(6): 751-763. [72] ZHANG X, LUO W L, LIN B H, et al. Vibration isolation effects of barriers filled with ceramsite and sand: full-scale model test and numerical investigation[J]. Construction and Building Materials, 2022, 341: 127789. [73] WANG M, ZHANG G L, PANG T, et al. Removal of anthracenemethanol from soil through a magnetic system assisted by ceramsite coated with nanoflower-structured carbon and preparation for its engineering application[J]. Chemical Engineering Journal, 2017, 328: 748-758. [74] DONG B Q, LIU J T, HONG S X, et al. Core-shell structured ceramsite made by excavated soil and expanded perlite through cold-bonded technology[J]. Construction and Building Materials, 2021, 306: 124941. |
[1] | 曹丹, 沈锭, 姚瞬雨, 丁之尧, 黄梓谕, 李梦琪, 黄慕洋, 包申旭. 淤泥和电石渣基新型轻质陶砖的制备[J]. 硅酸盐通报, 2024, 43(7): 2595-2601. |
[2] | 庚利民, 杜红秀, 聂小青, 周星宇, 闫常昊, 雷一彬. 粉煤灰陶粒轻质混凝土声屏障性能试验研究[J]. 硅酸盐通报, 2024, 43(5): 1897-1905. |
[3] | 邢莉, 孙晓思, 白频波, 王凯悦, 田玉明. 气藏型低密度陶粒支撑剂的制备与性能研究[J]. 硅酸盐通报, 2024, 43(2): 673-681. |
[4] | 郑富强, 戴妍妮, 胡兵, 刘臣, 欧阳思雯, 胡佩伟. 高铁低硅赤泥钠化还原的物相转变及铁分离特性[J]. 硅酸盐通报, 2024, 43(1): 209-218. |
[5] | 刘刚, 李心诚, 刘金军, 蹇守卫, 范璐璐, 涂亮亮. 碱激发垃圾焚烧底灰地聚物的制备及其水化特性研究[J]. 硅酸盐通报, 2024, 43(1): 287-294. |
[6] | 陈佳宁, 郝建英, 王升昌, 梁天成. 低密度陶粒支撑剂的水敏老化机理研究[J]. 硅酸盐通报, 2023, 42(9): 3334-3341. |
[7] | 刘春雨, 袁誉坤, 李丽丽, 方广, 徐凯. 模拟结构用混凝土核废物高温熔融处理研究[J]. 硅酸盐通报, 2023, 42(8): 2781-2786. |
[8] | 董浩然, 聂建华, 梁永和, 蔡曼菲, 鞠茂奇, 温立冬, 李洲. 烧成温度对菱镁矿尾矿合成镁橄榄石性能的影响[J]. 硅酸盐通报, 2023, 42(6): 2054-2061. |
[9] | 沈益航, 陈萍, 楼洪海, 沈云扬, 王子昂, 詹良通. 工程泥浆脱水泥饼制备烧结陶粒及其性能研究[J]. 硅酸盐通报, 2023, 42(6): 2062-2070. |
[10] | 隋洪宇, 李林, 温婧, 李芳芳, 姜涛. 硼泥焙烧预处理制备硫氧镁水泥[J]. 硅酸盐通报, 2023, 42(5): 1758-1766. |
[11] | 王宁, 陈宇昕, 徐文盛, 安胜利, 彭军, 彭继华. 氨氮废水处理用新型沸石化陶粒的制备[J]. 硅酸盐通报, 2023, 42(5): 1864-1874. |
[12] | 冯玉林, 高鸽, 柴喜林, 毛攀, 董晶亮, 徐光前, 黄柯靓. 城市污泥尾矿陶粒的制备工艺及其性能与应用[J]. 硅酸盐通报, 2023, 42(4): 1374-1383. |
[13] | 唐佩, 蒋事成, 邓腾飞, 陈伟. 固废基自发泡烧胀陶粒设计与性能研究[J]. 硅酸盐通报, 2023, 42(4): 1384-1392. |
[14] | 朱振中, 刘元珍, 王文婧, 王鲜星, 段鹏飞. 玄武岩纤维陶粒混凝土抗裂性能与热工性能试验研究[J]. 硅酸盐通报, 2023, 42(3): 908-916. |
[15] | 潘正华, 蒋亚清, 赵文昊. 发泡浆体流变特性对轻质混凝土匀质性的影响[J]. 硅酸盐通报, 2023, 42(2): 471-477. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||