[1] HAJIMOHAMMADI A, NGO T, MENDIS P. Enhancing the strength of pre-made foams for foam concrete applications[J]. Cement and Concrete Composites, 2018, 87: 164-171. [2] WANG Y F, LEI L, LIU J H, et al. Accelerators for normal concrete: a critical review on hydration, microstructure and properties of cement-based materials[J]. Cement and Concrete Composites, 2022, 134: 104762. [3] XIE H Y, DONG J J, DENG Y, et al. Proportioning design of foamed concrete mixed with recycled micro-powder of construction waste[J]. Architecture Engineering and Science, 2021, 2(3): 1-13. [4] 陈志纯, 郭丽萍, 李应权, 等. 石蜡乳液相变泡沫混凝土试验研究[J]. 硅酸盐通报, 2023, 42(5): 1623-1629+1649. CHEN Z C, GUO L P, LI Y Q, et al. Experimental study on paraffin emulsion phase change foamed concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1623-1629+1649 (in Chinese). [5] SHEKAR T, PATIL N N, PARATE H R. Selection and implementation of green materials for the sustainable development of a residential layout[J]. Materials Today: Proceedings, 2021, 42: 1077-1083. [6] GUO Y Z, CHEN X D, CHEN B, et al. Analysis of foamed concrete pore structure of railway roadbed based on X-ray computed tomography[J]. Construction and Building Materials, 2021, 273: 121773. [7] FU Y B, WANG X L, WANG L X, et al. Foam concrete: a state-of-the-art and state-of-the-practice review[J]. Advances in Materials Science and Engineering, 2020, 2020: 6153602. [8] CHUNG S Y, LEHMANN C, ABD ELRAHMAN M, et al. Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches[J]. Applied Sciences, 2017, 7(6): 550. [9] FALLIANO D, DE DOMENICO D, RICCIARDI G, et al. 3D-printable lightweight foamed concrete and comparison with classical foamed concrete in terms of fresh state properties and mechanical strength[J]. Construction and Building Materials, 2020, 254: 119271. [10] YANG Y Y, ZHOU Q, DENG Y, et al. Reinforcement effects of multi-scale hybrid fiber on flexural and fracture behaviors of ultra-low-weight foamed cement-based composites[J]. Cement and Concrete Composites, 2022, 128: 104422. [11] 谷亚新, 王延钊, 王 晴, 等. 四种外加剂对泡沫混凝土保温板性能的影响[J]. 混凝土, 2014(9): 64-67+71. GU Y X, WANG Y Z, WANG Q, et al. Effects of four kinds of additives on the properties of foamed concrete insulation board[J]. Concrete, 2014(9): 64-67+71 (in Chinese). [12] 张 旭, 王武祥, 杨鼎宜, 等. 超轻泡沫混凝土孔结构调控措施研究[J]. 硅酸盐通报, 2019, 38(7): 2255-2259+2267. ZHANG X, WANG W X, YANG D Y, et al. Study on control measures of pore structure of ultra light foam concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2255-2259+2267 (in Chinese). [13] 宋 强, 邹颖杰, 张 鹏, 等. 泡沫混凝土气泡性能与基体材料研究进展[J]. 硅酸盐学报, 2024, 52(2): 706-724. SONG Q, ZOU Y J, ZHANG P, et al. Research progress on foam performance and matrix materials for foam concrete[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 706-724 (in Chinese). [14] 胡 驰, 李 辉, 刘中炜, 等. 外加剂对泡沫混凝土孔结构及强度的影响[J]. 新型建筑材料, 2017, 44(10): 92-96. HU C, LI H, LIU Z W, et al. Effects of admixture on air-void structure and strength of lightweight foamed concrete[J]. New Building Materials, 2017, 44(10): 92-96 (in Chinese). [15] PATURAL L, MARCHAL P, GOVIN A, et al. Cellulose ethers influence on water retention and consistency in cement-based mortars[J]. Cement and Concrete Research, 2011, 41(1): 46-55. [16] CAPPELLARI M, DAUBRESSE A, CHAOUCHE M. Influence of organic thickening admixtures on the rheological properties of mortars: relationship with water-retention[J]. Construction and Building Materials, 2013, 38: 950-961. [17] 牛云辉, 卢忠远, 严 云, 等. 外加剂对泡沫混凝土性能的影响[J]. 混凝土与水泥制品, 2011(3): 9-13. NIU Y H, LU Z Y, YAN Y, et al. Influences of additives on performances of foamed concrete[J]. China Concrete and Cement Products, 2011(3): 9-13 (in Chinese). [18] MA B G, PENG Y, TAN H B, et al. Effect of polyacrylic acid on rheology of cement paste plasticized by polycarboxylate superplasticizer[J]. Materials, 2018, 11(7): 1081. [19] ZOU F B, TAN H B, GUO Y L, et al. Effect of sodium gluconate on dispersion of polycarboxylate superplasticizer with different grafting density in side chain[J]. Journal of Industrial and Engineering Chemistry, 2017, 55: 91-100. [20] 白应华, 田 冉, 李华伟, 等. 增稠剂与减水剂对泡沫混凝土孔结构稳定性的影响[J]. 新型建筑材料, 2021, 48(9): 115-119. BAI Y H, TIAN R, LI H W, et al. Influence of thickener and water reducer on stability of cellular concrete pore structure[J]. New Building Materials, 2021, 48(9): 115-119 (in Chinese). [21] 陈士博. 泡沫混凝土孔结构测试与图像分析法应用研究[D]. 泰安: 山东农业大学, 2022. CHEN S B. Research on pore structure tests and image analysis method application for foamed concrete[D]. Taian: Shandong Agricultural University, 2022 (in Chinese). [22] 杨保先, 万小梅, 赵铁军, 等. 碱矿渣泡沫混凝土配合比和孔结构研究[J]. 混凝土与水泥制品, 2018(2): 65-71. YANG B X, WAN X M, ZHAO T J, et al. Study on mix proportion and pore structure of alkali activated slag foam concrete[J]. China Concrete and Cement Products, 2018(2): 65-71 (in Chinese). [23] 刘 鑫, 姚云龙, 张思卿, 等. 浇筑期温度对泡沫混凝土性能和微孔结构的影响[J]. 西南交通大学学报, 2022: 1-10. LIU X, YAO Y L, ZHANG S Q, et al. Influence of temperature on the performance and microporous structure of foamed concrete during the pouring period[J]. Journal of Southwest Jiaotong University, 2022: 1-10 (in Chinese). [24] 陈立延, 杨 安, 洪 芬, 等. 不同粉煤灰掺量对泡沫混凝土性能及其孔径的影响[J]. 混凝土, 2021(8): 137-140. CHEN L Y, YANG A, HONG F, et al. Influence of different fly ash content on the performance and pore size of foamed concrete[J]. Concrete, 2021(8): 137-140 (in Chinese). |