[1] JINDAL B B. Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: a review[J]. Construction and Building Materials, 2019, 227: 116644. [2] 李化建, 赵国堂, 谢永江, 等. 含碳酸盐掺合料复合胶凝材料净浆流动特性研究[J]. 铁道建筑, 2011, 51(4): 155-157. LI H J, ZHAO G T, XIE Y J, et al. Research on the flow characteristics of composite paste with carbonate admixture in cementitious materials[J]. Railway Engineering, 2011, 51(4): 155-157 (in Chinese). [3] 刘诚斌, 岳 涛, 樊建领. 矿渣硫酸盐复合胶凝材料在路基中的试验研究[J]. 铁道建筑, 2012, 52(1): 124-126. LIU C B, YUE T, FAN J L. Experimental study of slag sulfate composite cementitious materials in road subgrade[J]. Railway Engineering, 2012, 52(1): 124-126 (in Chinese). [4] 刘 刚, 丁明巍, 刘金军, 等. 碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能[J]. 硅酸盐通报, 2023, 42(6): 2106-2114. LIU G, DING M W, LIU J J, et al. Hydration behavior and mechanical properties of alkaline excited slag-fly ash-metakaolin geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2106-2114 (in Chinese). [5] 刘 刚, 李心诚, 刘金军, 等. 碱激发垃圾焚烧底灰地聚物的制备及其水化特性研究[J]. 硅酸盐通报, 2024, 43(1): 287-294. LIU G, LI X C, LIU J J, et al. Preparation and hydration characteristics of alkali excited municipal solid waste incineration bottom ash geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(1): 287-294 (in Chinese). [6] YANG K H, SONG J K, SONG K I. Assessment of CO2 reduction of alkali-activated concrete[J]. Journal of Cleaner Production, 2013, 39: 265-272. [7] NEMATOLLAHI B, SANJAYAN J, QIU J S, et al. Micromechanics-based investigation of a sustainable ambient temperature cured one-part strain hardening geopolymer composite[J]. Construction and Building Materials, 2017, 131: 552-563. [8] GUO X L, PAN X J. Mechanical properties and mechanisms of fiber reinforced fly ash-steel slag based geopolymer mortar[J]. Construction and Building Materials. 2018, 179: 633-641. [9] 朱弘康, 林 常, 蔡 舒, 等. PVA纤维类型对应变硬化地聚合物基复合材料力学性能的影响[J]. 硅酸盐通报, 2021, 40(11): 3693-3701. ZHU H K, LIN C, CAI S, et al. Influence of PVA fiber type on mechanical properties of strain-hardening geopolymer composites[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3693-3701 (in Chinese). [10] OHNO M, LI V C. An integrated design method of engineered geopolymer composite[J]. Cement and Concrete Composites, 2018, 88: 73-85. [11] 张品乐, 朱昊天, 胡 静, 等. 高性价比混杂纤维工程水泥基复合材料的力学性能研究[J]. 硅酸盐通报, 2023, 42(11): 3816-3826. ZHANG P L, ZHU H T, HU J, et al. Mechanical properties of high cost performance hybrid fiber engineered cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3816-3826 (in Chinese). [12] ALREFAEI Y, DAI J G. Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites[J]. Construction and Building Materials, 2018, 184: 419-431. [13] 刘子仪, 宋少民. 基于响应面法的混杂纤维-复合胶凝材料体系优化设计[J]. 硅酸盐通报, 2023, 42(12): 4197-4207+4215. LIU Z Y, SONG S M. Optimal design of hybrid fiber-composite cementitious material system based on response surface methodology[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4197-4207+4215 (in Chinese). [14] WANG Y, CHAN C L, LEONG S H, et al. Engineering properties of strain hardening geopolymer composites with hybrid polyvinyl alcohol and recycled steel fibres[J]. Construction and Building Materials, 2020, 261: 120585. [15] CHENG Z, LIU Z, HAO H, et al. Multi-scale effects of tensile properties of lightweight engineered geopolymer composites reinforced with MWCNTs and steel-PVA hybrid fibers[J]. Construction and Building Materials, 2022, 342: 128090. [16] HUMUR G, ÇEVIK A. Effects of hybrid fibers and nanosilica on mechanical and durability properties of lightweight engineered geopolymer composites subjected to cyclic loading and heating-cooling cycles[J]. Construction and Building Materials, 2022, 326: 126846. [17] ARTYK Z, KUAN Y, ZHANG D C, et al. Development of engineered geopolymer composites containing low-activity fly ashes and ground granulated blast furnace slags with hybrid fibers[J]. Construction and Building Materials, 2024, 422: 135760. [18] ASTM Committee C09. Standard test method for static modulus of elasticity and poisson's ratio of concrete in compression: ASTM C469/C469M—2022[S]. West Conshohocken: ASTM International, 2022. [19] 工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461—2018[S]. 北京: 中国建材工业出版社, 2018. Ministry of industry and information technology. Standard test method for the mechanical properties of ductile fiber reinforced cementitious composites: JC/T 2461—2018[S]. Beijing: China Building Materials Press, 2018 (in Chinese). [20] 郭荣鑫, 郭佳栋, 颜 峰, 等. 聚丙烯纤维轻骨料混凝土力学性能及破坏机理研究[J]. 硅酸盐通报, 2019, 38(5): 1323-1330. GUO R X, GUO J D, YAN F, et al. Investigation on mechanical properties and failure mechanism of polypropylene fiber reinforced lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1323-1330 (in Chinese). [21] LIN J X, CHEN G, PAN H S, et al. Analysis of stress-strain behavior in engineered geopolymer composites reinforced with hybrid PE-PP fibers: A focus on cracking characteristics[J]. Composite Structures, 2023, 323: 117437. [22] 蔡智通. 钢-PE纤维高延性地聚物复合材料断裂性能实验研究[D]. 广州: 广东工业大学, 2023. CAI Z T. Experimental study on fracture properties of steel-PE fiber high ductile geopolymer composite[D]. Guangzhou: Guangdong University of Technology, 2023 (in Chinese). |