[1] 缪昌文, 穆 松. “双碳” 目标下水泥基材料绿色低碳路径思考与展望[J]. 未来城市设计与运营, 2022(2): 10-16. MIAO C W, MU S. Thinking and prospect of green low-carbon path of cement-based materials under the “double carbon” goal[J]. Future City Studies, 2022(2): 10-16 (in Chinese). [2] ZHANG H, MU S, CAI J S, et al. Water transport channel of cement paste modified by hydrophobic agent: X-ray nanotomography based analysis[J]. Nondestructive Testing and Evaluation, 2023: 1-14. [3] WANG P G, MO R, LI S, et al. A chemo-damage-transport model for chloride ions diffusion in cement-based materials: combined effects of sulfate attack and temperature[J]. Construction and Building Materials, 2021, 288: 123121. [4] 乔宏霞, 何忠茂, 刘翠兰. 无破损方法检测混凝土耐硫酸盐侵蚀性[J]. 低温建筑技术, 2006, 28(1): 3-5. QIAO H X, HE Z M, LIU C L. Non-destructive method to examine performance of concrete in sulfate environment[J]. Low Temperature Architecture Technology, 2006, 28(1): 3-5 (in Chinese). [5] 周茗如, 罗小博, 路承功, 等. 硫酸盐与干湿循环作用下混凝土耐久性试验研究[J]. 混凝土, 2017(9): 15-19. ZHOU M R, LUO X B, LU C G, et al. Experimental study of concrete durability under the action of sulfate and dry-wet circulation[J]. Concrete, 2017(9): 15-19 (in Chinese). [6] 朱 哲, 蔡景顺, 洪锦祥, 等. 水化响应纳米材料对钢筋混凝土整体耐蚀性能影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 732-736. ZHU Z, CAI J S, HONG J X, et al. Effect of hydration response nanomaterials on corrosion resistance of reinforced concrete[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(5): 732-736 (in Chinese). [7] 丁 娅, 秦晓川, 周 莹, 等. 氯离子侵蚀下钢筋混凝土结构耐久性寿命预测: 经典模型对比与分析[J]. 混凝土, 2020(12): 15-20. DING Y, QIN X C, ZHOU Y, et al. Durability life prediction of reinforced concrete structures under chloride ingress: a review of classic models[J]. Concrete, 2020(12): 15-20 (in Chinese). [8] SHARMA N, SHARMA P. Effect of hydrophobic agent in cement and concrete: a Review[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1116(1): 012175. [9] FENG Z J, WANG F J, XIE T, et al. Integral hydrophobic concrete without using silane[J]. Construction and Building Materials, 2019, 227: 116678. [10] 田 雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080. TIAN L, QIU L C. Progress of (super) hydrophobic cement-based materials[J]. Materials Reports, 2021, 35(19): 19070-19080 (in Chinese). [11] 赵 毅, 王 佳, 周 娇, 等. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 91-107. ZHAO Y, WANG J, ZHOU J, et al. Research progress of self-cleaning technology of cement-based superhydrophobic materials[J]. Materials Reports, 2023, 37(6): 91-107 (in Chinese). [12] 高英力, 曲良辰, 何 倍, 等. 超疏水-自发光水泥基复合材料性能及作用机理研究[J]. 硅酸盐通报, 2019, 38(1): 70-76. GAO Y L, QU L C, HE B, et al. Research on properties and mechanism of super-hydrophobic and luminescent cement-based composite materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 70-76 (in Chinese). [13] 陈 俊, 王振辉, 王 玮, 等. 超疏水表面材料的制备与应用[J]. 中国材料进展, 2013, 32(7): 399-405+441. CHEN J, WANG Z H, WANG W, et al. Preparation and application of super hydrophobic surfaces[J]. Materials China, 2013, 32(7): 399-405+441 (in Chinese). [14] 杨 帆. 溶胶-凝胶法制备氟硅烷涂层及其疏水性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012: 40-50. YANG F. Study on hydrophobicity of fluorine-modified silica sol synthesized by sol-gel method[D]. Harbin: Harbin Institute of Technology, 2012: 40-50 (in Chinese). [15] DU H R, SHEN Y D, ZHANG W J, et al. Fabrication of superhydrophobic concrete with stable mechanical properties and self-cleaning properties[J]. Journal of Building Engineering, 2023, 67: 105950. [16] 赵 毅, 王 佳, 李静雯, 等. 水泥基材料表面超疏水涂层研究进展[J]. 化工新型材料, 2022, 50(7): 219-224. ZHAO Y, WANG J, LI J W, et al. Research progress on superhydrophobic coating on cement-based material[J]. New Chemical Materials, 2022, 50(7): 219-224 (in Chinese). [17] SPAETH V, LECOMTE J P, DELPLANCKE M P, et al. Impact of silane and siloxane based hydrophobic powder on cement-based mortar[J]. Advanced Materials Research, 2013, 687: 100-106. [18] HOU P K, LI R, LI H T, et al. The use of hydrophobicity and pozzolanic reactivity of the PMHS/nanosilica hybrid composites on the water absorption of cement mortar[J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(3): 1775-1784. [19] 杜应吉, 韩苏建, 姚汝方, 等. 应用纳米微粉提高混凝土抗渗抗冻性能的试验研究[J]. 西北农林科技大学学报(自然科学版), 2004, 32(7): 107-110. DU Y J, HAN S J, YAO R F, et al. Experimental study on improving permeability resistant and frost-resistant properties of concrete with nm level micro-powder[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2004, 32(7): 107-110 (in Chinese). [20] 崔琳晶, 陈德鹏, 吕 忠, 等. 超疏水混凝土的制备及应用于防腐防冰领域的研究进展[J]. 功能材料, 2023, 54(6): 6066-6079. CUI L J, CHEN D P, LYU Z, et al. Research progress in fabrication of superhydrophobic concrete and its application on anti-corrosion and anti-icing field[J]. Journal of Functional Materials, 2023, 54(6): 6066-6079 (in Chinese). [21] ZHANG H, ZHOU Y, MU S, et al. Pore structure and permeability of cementitious materials containing a carboxylic acid type hydrophobic agent[J]. Frontiers in Materials, 2022, 9: 907638. [22] LE SAOÛT G, KOCABA V, SCRIVENER K. Application of the Rietveld method to the analysis of anhydrous cement[J]. Cement and Concrete Research, 2011, 41(2): 133-148. [23] ZHANG H, MU S, CAI J S, et al. The impact of carboxylic acid type hydrophobic agent on compressive strength of cementitious materials[J]. Construction and Building Materials, 2021, 291: 123315. [24] 孔祥明, 卢子臣, 张朝阳. 水泥水化机理及聚合物外加剂对水泥水化影响的研究进展[J]. 硅酸盐学报, 2017, 45(2): 274-281. KONG X M, LU Z C, ZHANG C Y. Recent development on understanding cement hydration mechanism and effects of chemical admixtures on cement hydration[J]. Journal of the Chinese Ceramic Society, 2017, 45(2): 274-281 (in Chinese). [25] 徐 鹏, 张轩翰, 明高林, 等. 纳米改性水泥基材料功能化研究进展[J]. 材料导报, 2023, 37(16): 119-128. XU P, ZHANG X H, MING G L, et al. Research progress on functionalized nano-modified cement-based materials[J]. Materials Reports, 2023, 37(16): 119-128 (in Chinese). [26] 吴 洁, 余新泉, 张友法, 等. 铝合金表面构建超疏水性的化学改性机理[J]. 东南大学学报(自然科学版), 2011, 41(5): 1036-1041. WU J, YU X Q, ZHANG Y F, et al. Mechanism of chemical modification for fabricating superhydrophobic aluminum alloy[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(5): 1036-1041 (in Chinese). [27] 王 健. 有机外加剂对合成钙矾石、氢氧化钙和C-S-H的影响机理[D]. 北京: 清华大学, 2021: 59-60. WANG J. Effect of chemical additives on formation and structures of synthetic ettringite, portlandite and C-S-H[D]. Beijing: Tsinghua University, 2021: 59-60 (in Chinese). [28] 刘 明. 聚羧酸减水剂对水泥水化的影响及相关机理研究[D]. 武汉: 武汉理工大学, 2015: 83-86. LIU M. Effects and related mechanisms of polycarboxylate superplasticizers on cement hydration[D]. Wuhan: Wuhan University of Technology, 2015: 83-86 (in Chinese). [29] 卢子臣. 不同官能团有机外加剂对水泥水化的影响规律及机理分析[D]. 北京: 清华大学, 2017: 109-112. LU Z C. Effect of chemical admixtures with different functional groups on cement hydration and the mechanisms[D]. Beijing: Tsinghua University, 2017: 109-112 (in Chinese). [30] 彭家惠, 瞿金东, 张建新, 等. 聚羧酸系减水剂在石膏颗粒表面的吸附特性及其吸附-分散机理[J]. 四川大学学报(工程科学版), 2008, 40(1): 91-95. PENG J H, QU J D, ZHANG J X, et al. Adsorption characteristics of polycarboxylate-type superplasticizers on the surface of gypsum particles and its adsorption-dispersion mechanism[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(1): 91-95 (in Chinese). |