[1] 崔聪聪, 张 舸. 有机前躯体浸渍对凝胶注模RBSiC的弥散强化[J]. 红外与激光工程, 2014, 43(增刊1): 188-192. CUI C C, ZHANG G. Dispersion strengthening of RBSiC by impregnation of organic precursor in gel casting[J]. Infrared and Laser Engineering, 2014, 43(supplement 1): 188-192 (in Chinese). [2] 赵汝成, 包建勋. 大口径碳化硅反射镜轻量化结构与镜坯成型[J]. 光学与光电技术, 2014, 12(6): 65-69. ZHAO R C, BAO J X. Lightweight structure and mirror blank formation of the SiC ceramic mirror with large caliber[J]. Optics & Optoelectronic Technology, 2014, 12(6): 65-69 (in Chinese). [3] 韩媛媛, 张宇民, 韩杰才, 等. 碳化硅反射镜轻量化结构优化设计[J]. 光电工程, 2006(8): 123-135. HAN Y Y, ZHANG Y M, HAN J C, et al. Optimum design of lightweight silicon carbide mirror[J]. Opto-Electronic Engineering, 2006(8): 123-135 (in Chinese). [4] ZENG C Q, WANG W, HAI K, et al. Lightweight airborne TPMS-filled reflective mirror design for low thermal deformation[J]. Composite Structures, 2024, 327: 117665. [5] JIN B J, LI S, ZHENG X Q, et al. Additive manufacturing Cf/SiC composites with high fiber content by stereolithography combined with precursor infiltration and pyrolysis[J]. Ceramics International, 2024, 50(2): 3982-3989. [6] 顾 玥, 王 功, 段文艳, 等. 陶瓷光固化成型技术的应用与展望[J]. 硅酸盐学报, 2021, 49(5): 867-877. GU Y, WANG G, DUAN W Y, et al. Application and prospect of photopolymerization technologies for ceramics[J]. Journal of the Chinese Ceramic Society, 2021, 49(5): 867-877 (in Chinese). [7] 王长顺, 吴思琪, 闫春泽, 等. SiC陶瓷增材制造技术的研究及应用进展[J]. 科学通报, 2022, 67(11): 1137-1154. WANG C S, WU S Q, YAN C Z, et al. Research and applications of additive manufacturing technology of SiC ceramics[J]. Chinese Science Bulletin, 2022, 67(11): 1137-1154 (in Chinese). [8] NELSON J C, VAIL N K, BARLOW J W, et al. Selective laser sintering of polymer-coated silicon carbide powders[J]. Industrial & Engineering Chemistry Research, 1995, 34(5): 1641-1651. [9] HUANG L Z, YIN J, CHEN X, et al. Selective laser sintering of SiC green body with low binder content[J]. Journal of Inorganic Materials, 2022, 37(3): 347. [10] 刘春磊, 郑 雯, 吴甲民, 等. 高性能陶瓷激光选区烧结成形技术研究进展[J]. 现代技术陶瓷, 2021, 42(增刊1): 64-73. LIU C L, ZHENG W, WU J M, et al. Research progress of laser selective sintering forming technology for high performance ceramics[J]. Advanced Ceramics, 2021, 42(supplement 1): 64-73 (in Chinese). [11] WANG K L, YIN J, CHEN X, et al. Advances on direct selective laser printing of ceramics: an overview[J]. Journal of Alloys and Compounds, 2024, 975: 172821. [12] WANG K L, YIN J, CHEN X, et al. Microstructure and properties of liquid phase sintered SiC ceramics fabricated via selective laser printing and precursor impregnation and pyrolysis[J]. Ceramics International, 2024, 50(3): 4315-4322. [13] YANG L X, WEN G Q, LIU T L, et al. Enhancing mechanical properties of selectively laser sintered SiC/Si composites printed using electrostatic spraying microspheres with fine particles[J]. Ceramics International, 2024, 50(2): 3556-3565. [14] PETERS A B, ZHANG D J, HERNANDEZ A, et al. Selective laser reaction synthesis of SiC, Si3N4 and HfC/SiC composites for additive manufacturing[J]. Journal of the European Ceramic Society, 2023, 43(4): 1270-1283. [15] 熊鼎宇, 屈 飘, 朱中琪, 等. 陶瓷挤出和喷射增材制造技术研究进展[J]. 机械工程学报, 57(17): 253-262. XIONG D Y, QU P, ZHU Z Q, et al. Research progress on extrusion and jetting-based ceramic additive manufacturing technologies[J]. Journal of Mechanical Engineering, 57(17): 253-262 (in Chinese). [16] CRAMER C L, ELLIOTT A M, LARA-CURZIO E, et al. Properties of SiC-Si made via binder jet 3D printing of SiC powder, carbon addition, and silicon melt infiltration[J]. Journal of the American Ceramic Society, 2021, 104(11): 5467-5478. [17] FLEISHER A, ZOLOTARYOV D, KOVALEVSKY A, et al. Reaction bonding of silicon carbides by binder jet 3D-printing, phenolic resin binder impregnation and capillary liquid silicon infiltration[J]. Ceramics International, 2019, 45(14): 18023-18029. [18] TERRANI K, JOLLY B, TRAMMELL M. 3D printing of high-purity silicon carbide[J]. Journal of the American Ceramic Society, 2020, 103(3): 1575-1581. [19] CHEN H H, WANG X F, XUE F D, et al. 3D printing of SiC ceramic: direct ink writing with a solution of preceramic polymers[J]. Journal of the European Ceramic Society, 2018, 38(16): 5294-5300. [20] KONG F L, CHEN X J, LI Y M, et al. A novel approach to prepare high density SiC ceramics by powder extrusion printing (PEP) combined with one-step sintering method[J]. Journal of the European Ceramic Society, 2024, 44(2): 626-634. [21] NIU F R, YANG X L, LI Y B, et al. Fused deposition modeling of Si3N4 ceramics: a cost-effective 3D-printing route for dense and high performance non-oxide ceramic materials[J]. Journal of the European Ceramic Society, 2022, 42: 7369-7376. [22] LI F F, ZHU M, CHEN J, et al. High-strength and low-silicon SiC ceramics prepared by extrusion molding 3D printing[J]. Journal of the European Ceramic Society, 2024, 44(2): 617-625. [23] FENG M Z, WANG Z W, WANG W Q, et al. Effect of bimodal particle size distribution on the performance of SiC slurry for maskless vat photopolymerization[J]. Journal of the European Ceramic Society, 2023, 43(16): 7296-7305. [24] AZUMA S, OBATA S, YOSHIDA M, et al. Preparation of silicon carbide slurry for UV curing stereolithography[J]. Materials Today: Proceedings, 2019, 16: 72-77. [25] BADEV A, ABOULIATIM Y, CHARTIER T, et al. Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 222(1): 117-122. [26] HALLORAN J W, TOMECKOVA V, GENTRY S, et al. Photopolymerization of powder suspensions for shaping ceramics[J]. Journal of the European Ceramic Society, 2011, 31(14): 2613-2619. [27] ZHANG Y B, LI S, LIU X D, et al. Additive manufacturing and characterization of microstructure evolution of Inconel 718 superalloy produced by vat photopolymerization[J]. Additive Manufacturing, 2023, 61: 103367. [28] DING G J, HE R J, ZHANG K Q, et al. Stereolithography-based additive manufacturing of gray-colored SiC ceramic green body[J]. Journal of the American Ceramic Society, 2019, 102(12): 7198-7209. [29] LI W, CUI C C, BAO J X, et al. Properties regulation of SiC ceramics prepared via stereolithography combined with reactive melt infiltration techniques[J]. Ceramics International, 2021, 47(24): 33997-34004. [30] HE R J, ZHOU N P, ZHANG K Q, et al. Progress and challenges towards additive manufacturing of SiC ceramic[J]. Journal of Advanced Ceramics, 2021, 10(4): 637-674. [31] 韩媛媛, 张宇民, 韩杰才, 等. 国内外碳化硅反射镜及系统研究进展[J]. 材料工程, 2005, 33(6): 59-63. HAN Y Y, ZHANG Y M, HAN J C, et al. Development of the silicon carbide mirror and system in the world[J]. Journal of Materials Engineering, 2005, 33(6): 59-63 (in Chinese). [32] 国绍文, 王武义, 张广玉, 等. 空间光学系统反射镜轻量化技术综述[J]. 光学仪器, 2005, 27(4): 78-82. GUO S W, WANG W Y, ZHANG G Y, et al. Lightweight mirror technology for space optical systems[J]. Optical Instruments, 2005, 27(4): 78-82 (in Chinese). [33] CHARLES H. Apparatus for production of three-dimensional objects by stereolithography: US4575330A[P]. 1986-11-03. [34] DING G J, HE R J, ZHANG K Q, et al. Stereolithography 3D printing of SiC ceramic with potential for lightweight optical mirror[J]. Ceramics International, 2020, 46(11): 18785-18790. [35] CHANG H T, TANG J, GUO X T, et al. Stereolithography-based additive manufacturing of RB-SiC ceramics by a two-step sintering method[J]. Ceramics International, 2023, 49(1): 1085-1091. [36] CAO J W, IDREES M, TIAN G Q, et al. Complex SiC-based structures with high specific strength fabricated by vat photopolymerization and one-step pyrolysis[J]. Additive Manufacturing, 2021, 48: 102430. [37] SHI Z A, WU J M, FANG Z Q, et al. Influence of high-temperature oxidation of SiC powders on curing properties of SiC slurry for digital light processing[J]. Journal of Advanced Ceramics, 2023, 12(1): 169-181. [38] YANG D, LI H, YANG W Q, et al. Controllable reduction of absorbance and two-step reaction for 3D-printed SiC ceramics with micron-level periodic structure[J]. Chemical Engineering Journal, 2023, 477: 146915. [39] BAI P K, WANG W F. Selective laser sintering mechanism of polymer-coated molybdenum powder[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(3): 543-547. [40] ABDELMOULA M, KÜÇÜKTÜRK G, GROSSIN D, et al. Direct selective laser sintering of silicon carbide: realizing the full potential through process parameter optimization[J]. Ceramics International, 2023, 49(20): 32426-32439. [41] MONTÓN Z A, ABDELMOULA M, KÜÇÜKTÜRK G, et al. Process parameters investigation for direct powder bed selective laser processing of silicon carbide parts[J]. Progress in Additive Manufacturing, 2022, 7(6): 1307-1322. [42] WOLFGANG L, REINHARD L. Rapid prototyping of complex-shaped parts of Si/SiC-ceramics by laser sintering[J]. Industrial Ceramics, 2000, 38: 6. [43] MEYERS S, DE LEERSNIJDER L, VLEUGELS J, et al. Direct laser sintering of reaction bonded silicon carbide with low residual silicon content[J]. Journal of the European Ceramic Society, 2018, 38(11): 3709-3717. [44] HUEBNER J, PFEIFFER S, RUTKOWSKI P, et al. Spray drying as a one-step production method of SiC-based granulates for direct reactive laser sintering of reaction bonded silicon carbide (RBSiC)[J]. Open Ceramics, 2023, 16: 100492. [45] LIU K, WU T, BOURELL D L, et al. Laser additive manufacturing and homogeneous densification of complicated shape SiC ceramic parts[J]. Ceramics International, 2018, 44(17): 21067-21075. [46] CHEN X, YIN J, HUANG L Z, et al. Microstructural tailoring, mechanical and thermal properties of SiC composites fabricated by selective laser sintering and reactive melt infiltration[J]. Journal of Advanced Ceramics, 2023, 12(4): 830-847. [47] HOLMAN R K, CIMA M J, UHLAND S A, et al. Spreading and infiltration of inkjet-printed polymer solution droplets on a porous substrate[J]. Journal of Colloid and Interface Science, 2002, 249(2): 432-440. [48] FENG K H, HU S D, LI L Y, et al. Preparation of low residual silicon content Si-SiC ceramics by binder jetting additive manufacturing and liquid silicon infiltration[J]. Journal of the European Ceramic Society, 2023, 43(13): 5446-5457. [49] ZOCCA A, LIMA P, DIENER S, et al. Additive manufacturing of SiSiC by layerwise slurry deposition and binder jetting (LSD-print)[J]. Journal of the European Ceramic Society, 2019, 39(13): 3527-3533. [50] DIENER S, SCHUBERT H, GÜNSTER J, et al. Ink development for the additive manufacturing of strong green parts by layerwise slurry deposition (LSD-print)[J]. Journal of the American Ceramic Society, 2023, 106(5): 2752-2763. [51] 胡祥芬, 牛富荣, 周 哲, 等. 熔融沉积(FDM)工艺参数对SiC陶瓷微观结构和力学性能影响[J]. 硬质合金, 2021, 38(3): 201-210. HU X F, NIU F R, ZHOU Z, et al. Effect of fused deposition modeling (FDM) process parameters on microstructure and mechanical properties of SiC ceramics[J]. Cemented Carbide, 2021, 38(3): 201-210 (in Chinese). [52] CHEYPE M, PATELOUP V, BERNARD S. Straightforward design strategy toward 3D near-net-shape stoichiometric SiC parts[J]. Advanced Materials, 2024, 36(11): 2307554. |