[1] 李 聪, 张 博, 胡加斌, 等. MgSiN2-Y2O3复合烧结助剂对Si3N4陶瓷力学及导热性能的影响[J]. 硅酸盐学报, 2021, 49(12): 2556-2562. LI C, ZHANG B, HU J B, et al. Effect of MgSiN2-Y2O3 sintering aids on mechanical properties and thermal conductivity of Si3N4 ceramics[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2556-2562 (in Chinese). [2] 王为得. 基于液相组成和显微结构调控的高热导率氮化硅陶瓷的研究[D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2021. WANG W D. Silicon nitride ceramics with high thermal conductivity based on the liquid phase composition and microstructure tailoring[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2021 (in Chinese). [3] 陈 波, 韦中华, 李 镔, 等. 氮化硅陶瓷在四大领域的研究及应用进展[J]. 硅酸盐通报, 2022, 41(4): 1404-1415. CHEN B, WEI Z H, LI B, et al. Research and application progress of silicon nitride ceramics in four major fields[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1404-1415 (in Chinese). [4] HIROSAKI N, OGATA S, KOCER C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal α-and β-Si3N4[J]. Physical Review B, 2002, 65(13): 134110. [5] 于俊杰. 基于显微结构调控的高硬高韧氮化硅陶瓷的研究[D]. 广州: 广东工业大学, 2019. YU J J. Silicon nitride ceramics with high hardness and toughness based on microstructure tailoring[D]. Guangzhou: Guangdong University of Technology, 2019 (in Chinese). [6] WILD S, GRIEVESON P, JACK K H. The crystal structures of alpha and beta silicon and germanium nitrides[C]//Special Ceramics 5 (Symposium Proceedings). 1972. [7] KUWABARA A, MATSUNAGA K, TANAKA I. Lattice dynamics and thermodynamical properties of silicon nitride polymorphs[J]. Physical Review B, 2008, 78(6): 064104. [8] ZHOU Y, HYUGA H, KUSANO D, et al. Development of high-thermal-conductivity silicon nitride ceramics[J]. Journal of Asian Ceramic Societies, 2015, 3(3): 221-229. [9] KITAYAMA M, HIRAO K, TSUGE A, et al. Thermal conductivity of β-Si3N4: II, effect of lattice oxygen[J]. Journal of the American Ceramic Society, 2000, 83(8): 1985-1992. [10] ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity[J]. Advanced Materials, 2011, 23(39): 4563-4567. [11] 刘幸丽, 宁晓山, YOSUKE T. 微观组织调控对氮化硅强度及热导率的影响[J]. 稀有金属材料与工程, 2015, 44(增刊1): 270-273. LIU X L, NING X S, YOSUKE T. Effect of microstructure control on strength and thermal conductivity of silicon nitride[J]. Rare Metal Materials and Engineering, 2015, 44(supplement 1): 270-273 (in Chinese). [12] RAHAMAN M N. Ceramic processing and sintering[M]. Boca Raton: CRC Press, 2017: 620-687. [13] GO S I, LI Y S, KO J W, et al. Microstructure and thermal conductivity of sintered reaction-bonded silicon nitride: the particle size effects of MgO additive[J]. Advances in Materials Science and Engineering, 2018, 2018: 4263497. [14] WANG W D, YAO D X, LIANG H Q, et al. Novel silicothermic reduction method to obtain Si3N4 ceramics with enhanced thermal conductivity and fracture toughness[J]. Journal of the European Ceramic Society, 2021, 41: 1735-1738. [15] LIN S, YAO D X, XIA Y F, et al. Influence of Yb2O3-MgO on mechanical properties and thermal conductivity of silicon nitride ceramics via gas pressure sintering[J]. China’s Refractories, 2015, 24(3): 34-39. [16] 王为得, 陈寰贝, 李世帅, 等. 以YbH2-MgO体系为烧结助剂制备高热导率高强度氮化硅陶瓷[J]. 无机材料学报, 2021, 36(9): 959-966. WANG W D, CHEN H B, LI S S, et al. Preparation of silicon nitride with high thermal conductivity and high flexural strength using YbH2-MgO as sintering additive[J]. Journal of Inorganic Materials, 2021, 36(9): 959-966 (in Chinese). [17] HU F, ZHAO L, XIE Z. Silicon nitride ceramics with high thermal conductivity and excellent mechanical properties fabricated with MgF2 sintering aid and post-sintering heat treatment[J]. Journal of Ceramic Science and Technology, 2016 [18] ZHU X W, SAKKA Y, ZHOU Y, et al. Effect of MgSiN2 addition on gas pressure sintering and thermal conductivity of silicon nitride with Y2O3[J]. Journal of the Ceramic Society of Japan, 2008, 116(1354): 706-711. [19] KITAYAMA M, HIRAO K, WATARI K, et al. Thermal conductivity of β-Si3N4: III, effect of rare-earth (RE=La, Nd, Gd, Y, Yb, and Sc) oxide additives[J]. Journal of the American Ceramic Society, 2001, 84(2): 353-358 [20] HAKEEM A S, DAUCÉ R, LEONOVA E, et al. Silicate glasses with unprecedented high nitrogen and electropositive metal contents obtained by using metals as precursors[J]. Advanced Materials, 2005, 17(18): 2214-2216. [21] LI Y S, KIM H N, WU H B, et al. Improved thermal conductivity of sintered reaction-bonded silicon nitride using a BN/graphite powder bed[J]. Journal of the European Ceramic Society, 2017, 37(15): 4483-4490. [22] HU F, ZHU T B, XIE Z P, et al. Elimination of grain boundaries and its effect on the properties of silicon nitride ceramics[J]. Ceramics International, 2020, 46(8): 12606-12612. [23] ZHU X W, SAKKA Y, ZHOU Y, et al. Processing and properties of sintered reaction-bonded silicon nitride with Y2O3-MgSiN2: effects of Si powder and Li2O addition[J]. Acta Materialia, 2007, 55(16): 5581-5591. [24] LEE H M, LEE E B, KIM D L, et al. Comparative study of oxide and non-oxide additives in high thermal conductive and high strength Si3N4 ceramics[J]. Ceramics International, 2016, 42(15): 17466-17471. [25] LI Y S, KIM H, WU H B, et al. Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C[J]. Journal of the American Ceramic Society, 2018, 101: 4128-4136. [26] WANG W D, YAO D, LIANG H, et al. Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics[J]. Journal of the European Ceramic Society, 2020: 5316-5323. [27] WANG W D, YAO D X, LIANG H Q, et al. Improved thermal conductivity of β-Si3N4 ceramics through the modification of the liquid phase by using GdH2 as a sintering additive[J]. Ceramics International, 2021, 47(4): 5631-5638. [28] 梁振华, 彭桂花, 李庆余, 等. 以MgSiN2作烧结助剂制备高热导β-Si3N4陶瓷[J]. 硅酸盐学报, 2010, 38(10): 1948-1952. LIANG Z H, PENG G H, LI Q Y, et al. Fabrication of high thermal conductivity β-Si3N4 ceramics with MgSiN2 as additive[J]. Journal of the Chinese Ceramic Society, 2010, 38(10): 1948-1952 (in Chinese). [29] GUO W M, WU L X, MA T, et al. Rapid fabrication of Si3N4ceramics by reaction-bonding and pressureless sintering[J]. Journal of the European Ceramic Society, 2016, 36(16): 3919-3924. [30] HIRAO K, NAGAOKA T, YASUOKA M, et al. Microstructure control of silicon nitride by seeding rod-like β-Si3N4 particles[M]//Advanced Materials ’93. Amsterdam: Elsevier, 1994: 867-870. [31] KITAYAMA M, HIRAO K, TORIYAMA M, et al. Thermal conductivity of β-Si3N4: I, effects of various microstructural factors[J]. Journal of the American Ceramic Society, 1999, 82(11): 3105-3112. [32] HAGGERTY J S, LIGHTFOOT A. Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing[M]//Ceramic Engineering and Science Proceedings. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008: 475-487. [33] 廖圣俊, 周立娟, 尹凯俐, 等. 高导热氮化硅陶瓷基板研究现状[J]. 材料导报, 2020, 34(21): 21105-21114. LIAO S J, ZHOU L J, YIN K L, et al. Research status of β-Si3N4 ceramics based on high thermal conductivity[J]. Materials Reports, 2020, 34(21): 21105-21114 (in Chinese). [34] LI S Q, SASSA K, ASAI S. Textured crystal growth of Si3N4 ceramics in high magnetic field[J]. Materials Letters, 2005, 59(2/3): 153-157. [35] 谢雨洲, 彭超群, 王小锋, 等. 流延成型技术的研究进展[J]. 中国有色金属学报, 2015, 25(7): 1846-1857. XIE Y Z, PENG C Q, WANG X F, et al. Research progress of tape casting[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(7): 1846-1857 (in Chinese). [36] 张景贤, 段于森, 江东亮, 等. 高导热Si3N4陶瓷基片材料的制备研究[J]. 真空电子技术, 2016(5): 7-10. ZHANG J X, DUAN Y S, JIANG D L, et al. Preparation of high thermal conductivity Si3N4 ceramic substrates[J]. Vacuum Electronics, 2016(5): 7-10 (in Chinese). [37] 王铃沣, 周泊岸, 段于森, 等. 氮化硅陶瓷基板制备及其金属化研究[J]. 化工矿物与加工, 2024, 53(2): 12-19. WANG L F, ZHOU B A, DUAN Y S, et al. Study on preparation and metallization of Si3N4 ceramic substrate[J]. Industrial Minerals & Processing, 2024, 53(2): 12-19 (in Chinese). [38] 张伟儒, 高 崇, 郑 彧. 氮化硅: 未来陶瓷基片材料的发展趋势[J]. 新材料产业, 2016(11): 34-37. ZHANG W R, GAO C, ZHENG Y. Silicon nitride: the development trend of ceramic substrate materials in the future[J]. Advanced Materials Industry, 2016(11): 34-37 (in Chinese). [39] 雷 张, 李洪滔, 张春艳, 等. 高热导氮化硅陶瓷基板材料研究进展[J]. 中国陶瓷, 2023, 59(7): 1-9+20. LEI Z, LI H T, ZHANG C Y, et al. Research progress of silicon nitride ceramic substrate materials with high thermal conductivity[J]. China Ceramics, 2023, 59(7): 1-9+20 (in Chinese). [40] DUAN Y S, ZHANG J X, LI X G, et al. Low temperature pressureless sintering of silicon nitride ceramics for circuit substrates in powder electronic devices[J]. Ceramics International, 2018, 44(4): 4375-4380. [41] YANG C P, LIU Q, ZHANG B, et al. Effect of MgF2 addition on mechanical properties and thermal conductivity of silicon nitride ceramics[J]. Ceramics International, 2019, 45(10): 12757-12763. [42] LI Y S, KIM H N, WU H B, et al. Enhanced thermal conductivity in Si3N4 ceramic by addition of a small amount of carbon[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 157-164. [43] 于政波, 侯伟华. Si3N4陶瓷气氛压力烧结(GPS)技术[J]. 现代技术陶瓷, 1995, 16(4): 45-49. YU Z B, HOU W H. A new sintering process of Si3N4 ceramics: gas pressure sintering (GPS)[J]. Advanced Ceramics, 1995, 16(4): 45-49 (in Chinese). |