欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (4): 1246-1256.

• “玻璃材料与玻璃技术”专题(II) • 上一篇    下一篇

顶烧/侧烧燃烧方式对全氧燃烧玻纤窑炉温度场流场影响的数值模拟研究

曾健华1, 陈德全2, 李浩然3, 韩建军1, 王静1, 李路瑶3   

  1. 1.武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070;
    2.重庆国际复合材料股份有限公司,重庆 400000;
    3.武汉理工大学汽车工程学院,武汉 430070
  • 收稿日期:2023-12-14 修订日期:2024-02-06 出版日期:2024-04-15 发布日期:2024-04-17
  • 通信作者: 李路瑶,博士,助理研究员。E-mail:791648660@qq.com
  • 作者简介:曾健华(1998—),男,硕士研究生。主要从事玻璃熔窑模拟研究。E-mail:oliverjianhua@163.com
  • 基金资助:
    国家自然科学基金青年项目(52102030);湖北省自然科学基金青年项目(2021CFB072)

Numerical Simulation of Effects of Top/Side Firing Methods on Temperature and Flow Fields of Oxygen-Fuel Glass Fiber Furnace

ZENG Jianhua1, CHEN Dequan2, LI Haoran3, HAN Jianjun1, WANG Jing1, LI Luyao3   

  1. 1. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China;
    2. Chongqing Polycomp International Corporation, Chongqing 400000, China;
    3. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Received:2023-12-14 Revised:2024-02-06 Online:2024-04-15 Published:2024-04-17

摘要: 为优化全氧玻纤窑炉燃烧系统,提高窑炉传热效率,本文采用数值模拟方法探究了全氧燃烧玻纤窑炉顶烧与侧烧两种燃烧方式对燃烧空间温度场、烟气流场、玻璃液温度场和传热效率的影响。结果表明:顶烧窑炉火焰聚集,燃烧空间温度差异明显,侧烧窑炉火焰在窑长方向上均匀分布,燃烧空间整体温度高于顶烧窑炉;侧烧方式对大碹和胸墙耐火材料高温侵蚀程度更高的可能性更大;侧烧窑炉高温烟气在燃烧空间中停留时间延长有利于烟气与燃烧空间内气流和耐火材料进行热交换,统计得到侧烧窑炉出口烟气平均温度更低;侧烧窑炉玻璃液沿窑宽方向上温度分布较均匀,顶烧玻璃液平均温度为1 531 ℃,高于侧烧玻璃液平均温度1 523 ℃;顶烧窑炉传热效率为52.3%,侧烧窑炉传热效率为51.9%,顶烧窑炉和侧烧窑炉采用相同天然气供应量、电助熔功率、玻璃液熔化量条件下,顶烧窑炉中喷枪火焰直接作用到玻璃液和配合料层,传热效率更高。

关键词: 数值模拟, 全氧燃烧, 玻纤窑炉, 顶烧, 侧烧, 传热效率

Abstract: To optimize the combustion system of oxygen-fuel glass fiber furnace and improve the heat transfer efficiency of the furnace, this paper uses numerical simulation methods to investigate the effects of two combustion methods, the top firing furnace and the side firing furnace, on the temperature field within the combustion space, flue gas flow field, glass temperature field, and heat transfer efficiency of oxygen-fuel glass fiber furnace. The results indicate that, the flame of the top firing furnace is concentrated, resulting in pronounced temperature variations within the combustion space. In contrast, the side firing furnace features flames uniformly distributed along the length of the furnace. As a consequence, the overall temperature of the combustion space in the side firing furnace is higher than that in the top firing furnace. The side firing method is more likely to result in a higher degree of high-temperature corrosion on the refractory materials of the crown and breast wall. The prolonged presence of high-temperature flue gas in the combustion space of the side firing furnace is advantageous for facilitating heat exchange between the flue gas and the airflow, as well as refractory materials within the combustion space. The statistical analysis reveals that the side firing furnace exhibits a lower average flue gas temperature at its exits. The side firing furnace demonstrates a more uniform temperature distribution of molten glass along the width of the furnace. The average temperature of the molten glass in the top firing furnace is 1 531 ℃, exceeding the average temperature of 1 523 ℃ observed in the side firing furnace. The top firing furnace exhibits a heat transfer efficiency of 52.3%, surpassing the heat transfer efficiency of 51.9% observed in the side firing furnace. This implies that, under identical conditions of natural gas supply, electrical melting assistance, and molten glass melting capacity, the higher heat transfer efficiency in the top firing furnace is attributed to the direct interaction of the burner flame with the molten glass and batch layer.

Key words: numerical simulation, oxygen-fuel firing, glass fiber furnace, top firing, side firing, heat transfer efficiency

中图分类号: