硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (2): 682-694.
所属专题: 玻璃
李靖威1, 李敬超2, 郑睿鹏1, 王晨3
收稿日期:
2023-08-23
修订日期:
2023-10-08
出版日期:
2024-02-15
发布日期:
2024-02-05
通信作者:
郑睿鹏,高级工程师。E-mail:zhengruipeng123@126.com
作者简介:
李靖威(1993—),男,工程师。主要从事核安全级电气设备鉴定工作。E-mail:839474347@qq.com
LI Jingwei1, LI Jingchao2, ZHENG Ruipeng1, WANG Chen3
Received:
2023-08-23
Revised:
2023-10-08
Online:
2024-02-15
Published:
2024-02-05
摘要: 本文介绍了玻璃结构弛豫的假想温度与弛豫动力学理论,并阐述了这些理论的建立、发展及研究现状。假想温度理论重点关注玻璃热历史,给出了玻璃结构弛豫进展方向与快慢的热力学判据;弛豫动力学则重点关注玻璃化转变现象,揭示了玻璃结构弛豫的微观机制与演变过程。热历史、玻璃成分、杂质缺陷、温度等是影响无机玻璃结构弛豫的关键因素,也是玻璃生产与应用过程中的重要切入点。目前,玻璃结构弛豫理论发展较为完善,但复杂体系无机玻璃结构弛豫的试验研究依然存在诸多空白,具体微观机制有待进一步完善,并且微晶玻璃和玻璃基复合材料的结构弛豫还未受到广泛关注,此类“瓶颈”问题的突破有望支撑无机玻璃材料在更为严苛的应用环境中长期安全服役。
中图分类号:
李靖威, 李敬超, 郑睿鹏, 王晨. 无机玻璃结构弛豫及影响因素综述[J]. 硅酸盐通报, 2024, 43(2): 682-694.
LI Jingwei, LI Jingchao, ZHENG Ruipeng, WANG Chen. Review of Structural Relaxation and Influencing Factors of Inorganic Glass[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 682-694.
[1] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177-351. WANG W H. Essence and characteristics of amorphous substances[J]. Progress in Physics, 2013, 33(5): 177-351 (in Chinese). [2] 李家治, 陈学贤, 盛连根. 玻璃的结构弛豫[J]. 硅酸盐学报, 1983, 11(3): 342-351. LI J Z, CHEN X X, SHENG L G. Structural relaxation in glass[J]. Journal of the Chinese Ceramic Society, 1983, 11(3): 342-351 (in Chinese). [3] 周永恒, 顾真安. 石英玻璃及其水晶原料中羟基的研究[J]. 硅酸盐学报, 2002, 30(3): 357-361. ZHOU Y H, GU Z A. Study on hydroxyl in quartz glass and quartz raw materials[J]. Journal of the Chinese Ceramic Society, 2002, 30(3): 357-361 (in Chinese). [4] FANDERLIK I. Silica glass and its application[M]. Prague: Publishers of Technical Literature, 1991: 271. [5] WEBB S. Silicate melts: relaxation, rheology, and the glass transition[J]. Reviews of Geophysics, 1997, 35(2): 191-218. [6] YU H B, SAMWER K, WU Y, et al. Correlation between β relaxation and self-diffusion of the smallest constituting atoms in metallic glasses[J]. Physical Review Letters, 2012, 109(9): 095508. [7] ZHU F, NGUYEN H K, SONG S X, et al. Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass[J]. Nature Communications, 2016, 7: 11516. [8] WANG Q, LIU J J, YE Y F, et al. Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses[J]. Materials Today, 2017, 20(6): 293-300. [9] 段俊杰, 詹伟涛, GHONGNIAN H, 等. 钒磷玻璃结构弛豫的DMA测量研究[J]. 中国科学: 物理学 力学 天文学, 2018, 48(2): 94-100. DUAN J J, ZHAN W T, GHONGNIAN H, et al. The structural relaxation in vanadium phosphate glass studied by DMA[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(2): 94-100 (in Chinese). [10] BERTHIER L, BIROLI G. Theoretical perspective on the glass transition and amorphous materials[J]. Reviews of Modern Physics, 2011, 83(2): 587-645. [11] 胡远超. 过冷液体和金属玻璃的结构与动力学研究[D]. 北京: 中国科学院物理研究所, 2018. HU Y C. Study on structure and kinetics of supercooled liquid and metallic glass[D]. Beijing: Institute of Physics Chinese Academy of Sciences, 2018 (in Chinese). [12] 王利民, 王冰涛, 陈泽明, 等. 分子非晶体系中结构弛豫的非线性动力学研究[J]. 燕山大学学报, 2020, 44(3): 238-246. WANG L M, WANG B T, CHEN Z M, et al. Nonlinear dynamics of structural relaxation in molecular amorphous systems[J]. Journal of Yanshan University, 2020, 44(3): 238-246 (in Chinese). [13] 樊慧娟, 王 晶, 张 惠. 动态热机械分析在高分子聚合物及复合材料中的应用[J]. 化学与黏合, 2017, 39(2): 132-134. FAN H J, WANG J, ZHANG H. Applications of dynamic mechanical thermal analysis in polymers and composite materials[J]. Chemistry and Adhesion, 2017, 39(2): 132-134 (in Chinese). [14] TOOL A Q. Relation between inelastic deformability and thermal expansion of glass in its annealing range[J]. Journal of the American Ceramic Society, 1946, 29(9): 240-253. [15] AGARWAL A, DAVIS K M, TOMOZAWA M. A simple IR spectroscopic method for determining fictive temperature of silica glasses[J]. Journal of Non-Crystalline Solids, 1995, 185(1/2): 191-198. [16] KOIKE A, RYU S R, TOMOZAWA M. Adequacy test of the fictive temperatures of silica glasses determined by IR spectroscopy[J]. Journal of Non-Crystalline Solids, 2005, 351(52/53/54): 3797-3803. [17] HAKEN U, HUMBACH O, ORTNER S, et al. Refractive index of silica glass: influence of fictive temperature[J]. Journal of Non-Crystalline Solids, 2000, 265(1/2): 9-18. [18] AGARWAL A, TOMOZAWA M. Correlation of silica glass properties with the infrared spectra[J]. Journal of Non-Crystalline Solids, 1997, 209(1/2): 166-174. [19] BRÜNING R, COTTRELL D. X-ray and neutron scattering observations of structural relaxation of vitreous silica[J]. Journal of Non-Crystalline Solids, 2003, 325(1/2/3): 6-15. [20] SAKAGUCHI S, TODOROKI S, MURATA T. Rayleigh scattering in silica glass with heat treatment[J]. Journal of Non-Crystalline Solids, 1997, 220(2/3): 178-186. [21] CHAMPAGNON B, CHEMARIN C, DUVAL E, et al. Glass structure and light scattering[J]. Journal of Non-Crystalline Solids, 2000, 274(1/2/3): 81-86. [22] 梁晓娟, 杨昕宇, 向卫东. Na2O-B2O3-SiO2系统玻璃结构驰豫的研究[J]. 稀有金属材料与工程, 2008, 37(增刊2): 540-542. LIANG X J, YANG X Y, XIANG W D. Study on the structural relaxation of Na2O-B2O3SiO2 glasses prepared by sol-gel method[J]. Rare Metal Materials and Engineering, 2008, 37(supplement 2): 540-542 (in Chinese). [23] 张香云, 袁子洲, 冯雪磊, 等. 高温结构弛豫对非晶复合材料力学性能的影响[J]. 稀有金属, 2015, 39(2): 124-129. ZHANG X Y, YUAN Z Z, FENG X L, et al. Mechanical properties of bulk metallic glasses composites during high temperature structural relaxation[J]. Chinese Journal of Rare Metals, 2015, 39(2): 124-129 (in Chinese). [24] ANGELL C A. Formation of glasses from liquids and biopolymers[J]. Science, 1995, 267(5206): 1924-1935. [25] ANGELL C A, NGAI K L, MCKENNA G B, et al. Relaxation in glassforming liquids and amorphous solids[J]. Journal of Applied Physics, 2000, 88(6): 3113-3157. [26] DEBENEDETTI P G, STILLINGER F H. Supercooled liquids and the glass transition[J]. Nature, 2001, 410(6825): 259-267. [27] LUBCHENKO V, WOLYNES P G. Theory of structural glasses and supercooled liquids[J]. Annual Review of Physical Chemistry, 2007, 58: 235-266. [28] WANG Z, SUN B A, BAI H Y, et al. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass[J]. Nature Communications, 2014, 5: 5823. [29] SONG L J, GAO Y R, ZOU P, et al. Detecting the exponential relaxation spectrum in glasses by high-precision nanocalorimetry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(20): e2302776120. [30] GAO Y R, TONG Y, SONG L J, et al. Continuous transition from gamma to beta dynamics during stress relaxation[J]. Scripta Materialia, 2023, 224: 115114. [31] JURCA S, CHEN H, SEN S. Structural, shear and volume relaxation in a commercial float glass during aging[J]. Journal of Non-Crystalline Solids, 2022, 589: 121650. [32] FYTAS G. Relaxation processes in amorphous poly(cyclohexyl methacrylate) in the rubbery and glassy state studied by photon correlation spectroscopy[J]. Macromolecules, 1989, 22(1): 211-215. [33] LAUPRETRE F, VIRLET J, BAYLE J P. Local motions between unequivalent conformations in solid poly(cyclohexyl methacrylate): a variable-temperature magic-angle carbon-13 nuclear magnetic resonance study[J]. Macromolecules, 1985, 18(10): 1846-1850. [34] CASALINI R, ROLAND C M. Pressure evolution of the excess wing in a type-BGlass former[J]. Physical Review Letters, 2003, 91: 015702. [35] NGAI K L, PALUCH M. Classification of secondary relaxation in glass-formers based on dynamic properties[J]. The Journal of Chemical Physics, 2004, 120(2): 857-873. [36] BÖHMER R, DIEZEMANN G, GEIL B, et al. Correlation of primary and secondary relaxations in a supercooled liquid[J]. Physical Review Letters, 2006, 97(13): 135701. [37] CASALINI R, ROLAND C M. Aging of the secondary relaxation to probe structural relaxation in the glassy state[J]. Physical Review Letters, 2009, 102(3): 035701. [38] COHEN M H, TURNBULL D. Molecular transport in liquids and glasses[J]. Journal of Chemical Physics, 1959, 31(5): 1164-1169. [39] ADAM G, GIBBS J H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids[J]. The Journal of Chemical Physics, 1965, 43(1): 139-146. [40] BOYER R F. Mechanical motions in amorphous and semi-crystalline polymers[J]. Polymer, 1976, 17(11): 996-1008. [41] JOHARI G P, GOLDSTEIN M. Viscous liquids and the glass transition. II. secondary relaxations in glasses of rigid molecules[J]. Journal of Chemical Physics, 1970, 53(6): 2372-2388. [42] JOHARI G P, GOLDSTEIN M. Viscous liquids and the glass transition. III. secondary relaxations in aliphatic alcohols and other nonrigid molecules[J]. The Journal of Chemical Physics, 1971, 55(9): 4245-4252. [43] 胡丽娜, 张春芝, 岳远征, 等. 研究玻璃转变本质的新起点: 玻璃态的慢β弛豫[J]. 科学通报, 2010, 55(2): 115-131. HU L N, ZHANG C Z, YUE Y Z, et al. A new starting point for studying the nature of glass transition: slow β relaxation of glass state[J]. Chinese Science Bulletin, 2010, 55(2): 115-131 (in Chinese). [44] NGAI K L, LUNKENHEIMER P, LEÓN C, et al. Nature and properties of the Johari-Goldstein β-relaxation in the equilibrium liquid state of a class of glass-formers[J]. The Journal of Chemical Physics, 2001, 115(3): 1405-1413. [45] 王利民, 孙明道. 液态结构弛豫动力学非指数性的研究进展[J]. 燕山大学学报, 2010, 34(6): 471-482. WANG L M, SUN M D. Studies of non-exponentiality of structural relaxation in glass forming liquids: a review[J]. Journal of Yanshan University, 2010, 34(6): 471-482 (in Chinese). [46] BÖHMER R, NGAI K L, ANGELL C A, et al. Nonexponential relaxations in strong and fragile glass formers[J]. The Journal of Chemical Physics, 1993, 99(5): 4201-4209. [47] SIDEBOTTOM D, BERGMAN R, BÖRJESSON L, et al. Two-step relaxation decay in a strong glass former[J]. Physical Review Letters, 1993, 71(14): 2260-2263. [48] SIDEBOTTOM D L, CHANGSTROM J R. Viscoelastic relaxation in molten phosphorus pentoxide using photon correlation spectroscopy[J]. Physical Review B, 2008, 77(2): 020201. [49] SIDEBOTTOM D L, RODENBURG B V, CHANGSTROM J R. Connecting structure and dynamics in glass forming materials by photon correlation spectroscopy[J]. Physical Review B, 2007, 75(13): 132201. [50] SIMMONS J H, OCHOA R, SIMMONS K D, et al. Non-Newtonian viscous flow in soda-lime-silica glass at forming and annealing temperatures[J]. Journal of Non-Crystalline Solids, 1988, 105(3): 313-322. [51] MAJHI K, VARMA K B R. Dielectric relaxation in CaO-Bi2O3-B2O3 glasses[J]. International Journal of Applied Ceramic Technology, 2009, 7(supplement 1): E89-E97. [52] RODENBURG B V, SIDEBOTTOM D L. Dynamic light scattering in mixed alkali metaphosphate glass forming liquids[J]. The Journal of Chemical Physics, 2006, 125(2): 024502. [53] LEBON M J, DREYFUS C, LI G, et al. Depolarized light-scattering study of molten zinc chloride[J]. Physical Review E, 1995, 51(5): 4537-4547. [54] ZISSI G D, YANNOPOULOS S N. Dynamic light scattering study of the liquid ↔ glass transition for the GdCl3-3AlCl3 glass-forming mixture[J]. Physical Review E, 2001, 64(5): 051504. [55] PAVLATOU E A, RIZOS A K, PAPATHEODOROU G N, et al. Dynamic light scattering study of ionic KNO3-Ca(NO3)2 mixtures[J]. The Journal of Chemical Physics, 1991, 94(1): 224-232. [56] CHENG L T, YAN Y X, NELSON K A. Ultrasonic and hypersonic properties of molten KNO3-Ca(NO3)2 mixture[J]. The Journal of Chemical Physics, 1989, 91(10): 6052-6061. [57] QIAO J C, WANG Y J, ZHAO L Z, et al. Transition from stress-driven to thermally activated stress relaxation in metallic glasses[J]. Physical Review B, 2016, 94(10): 104203. [58] LUO P, WEN P, BAI H, et al. Relaxation decoupling in metallic glasses at low temperatures[J]. Physical Review Letters, 2017, 118(22): 225901. [59] YUE Y Z, JENSEN S L, DE C CHRISTIANSEN J. Physical aging in a hyperquenched glass[J]. Applied Physics Letters, 2002, 81(16): 2983-2985. [60] HU L N, YUE Y Z. Secondary relaxation behavior in a strong glass[J]. The Journal of Physical Chemistry B, 2008, 112(30): 9053-9057. [61] ZHAO R, JIANG H Y, LUO P, et al. Reversible and irreversible β-relaxations in metallic glasses[J]. Physical Review B, 2020, 101(9): 094203. [62] KIM D L, TOMOZAWA M. Fictive temperature of silica glass optical fibers-re-examination[J]. Journal of Non-Crystalline Solids, 2001, 286(1/2): 132-138. [63] LE PARC R, CHAMPAGNON B, GUENOT P, et al. Thermal annealing and density fluctuations in silica glass[J]. Journal of Non-Crystalline Solids, 2001, 293/294/295: 366-369. [64] LEVELUT C, FAIVRE A, LE PARC R, et al. Influence of thermal aging on density fluctuations in oxide glasses measured by small-angle X-ray scattering[J]. Journal of Non-Crystalline Solids, 2002, 307/308/309/310: 426-435. [65] TOMOZAWA M, LEE Y K. Surface fictive temperature of annealed and rate-cooled soda-lime glasses[J]. Journal of Non-Crystalline Solids, 1999, 253(1/2/3): 119-125. [66] GALLINO I, CANGIALOSI D, EVENSON Z, et al. Hierarchical aging pathways and reversible fragile-to-strong transition upon annealing of a metallic glass former[J]. Acta Materialia, 2018, 144: 400-410. [67] WANG J Q, SHEN Y, PEREPEZKO J H, et al. Increasing the kinetic stability of bulk metallic glasses[J]. Acta Materialia, 2016, 104: 25-32. [68] SCHROERS J. On the formability of bulk metallic glass in its supercooled liquid state[J]. Acta Materialia, 2008, 56(3): 471-478. [69] HU L N, YUE Y Z. Secondary relaxation in metallic glass formers: its correlation with the genuine johari-goldstein relaxation[J]. The Journal of Physical Chemistry C, 2009, 113(33): 15001-15006. [70] NGAI K, CAPACCIOLI S. Relation between the activation energy of the Johari-Goldstein β relaxation and Tg of glass formers[J]. Physical Review E, 2004, 69(3): 031501. [71] SCHROERS J, LOHWONGWATANA B, JOHNSON W L, et al. Gold based bulk metallic glass[J]. Applied Physics Letters, 2005, 87(6): 061912. [72] SAITO K, OGAWA N, IKUSHIMA A J, et al. Effects of aluminum impurity on the structural relaxation in silica glass[J]. Journal of Non-Crystalline Solids, 2000, 270(1/2/3): 60-65. [73] 贺行洋, 代 飞, 苏 英, 等. 体相与表面结构对石英玻璃结构弛豫的影响[J]. 建材世界, 2016, 37(5): 1-3. HE X Y, DAI F, SU Y, et al. Effect of bulk phase and surface structure on structural relaxation of Shi Ying glass[J]. The World of Building Materials, 2016, 37(5): 1-3 (in Chinese). [74] 詹伟涛, 贺建雄, 王艺臻, 等. 羟基含量对全氧燃烧浮法玻璃结构弛豫的影响[J]. 材料导报, 2018, 32(12): 2062-2065. ZHAN W T, HE J X, WANG Y Z, et al. Influence of hydroxyl content on structural relaxation in oxy-fuel combustion float glass[J]. Materials Review, 2018, 32(12): 2062-2065 (in Chinese). [75] FULCHER G S. Analysis of recent measurements of the viscosity of glasses[J]. Journal of the American Ceramic Society, 1925, 8(6): 339-355. [76] DINGWELL D B, WEBB S L. Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes[J]. Physics and Chemistry of Minerals, 1989, 16(5): 508-516. [77] SIPP A, RICHET P. Equivalence of volume, enthalpy and viscosity relaxation kinetics in glass-forming silicate liquids[J]. Journal of Non-Crystalline Solids, 2002, 298(2/3): 202-212. [78] TOMOZAWA M, PENG Y L. Surface relaxation as a mechanism of static fatigue of pristine silica glass fibers[J]. Journal of Non-Crystalline Solids, 1998, 240(1/2/3): 104-109. [79] PALUCH M, GRZYBOWSKA K, GRZYBOWSKI A. Effect of high pressure on the relaxation dynamics of glass-forming liquids[J]. Journal of Physics: Condensed Matter, 2007, 19(20): 205117. [80] PENG Y L, TOMOZAWA M, BLANCHET T A. Tensile stress-acceleration of the surface structural relaxation of SiO2 optical fibers[J]. Journal of Non-Crystalline Solids, 1997, 222: 376-382. [81] WEBB E B, GAROFALINI S H. Relaxation of silica glass surfaces before and after stress modification in a wet and dry atmosphere: molecular dynamics simulations[J]. Journal of Non-Crystalline Solids, 1998, 226(1/2): 47-57. [82] 廖伟帆, 胡传杰, 王明忠, 等. 超薄铝硅玻璃离子交换工艺研究[J]. 硅酸盐通报, 2022, 41(4): 1163-1169. LIAO W F, HU C J, WANG M Z, et al. Ion-exchange process of ultrathin aluminosilicate glasses[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1163-1169 (in Chinese). [83] TOMOZAWA M, KIM D L, AGARWAL A, et al. Water diffusion and surface structural relaxation of silica glasses[J]. Journal of Non-Crystalline Solids, 2001, 288(1/2/3): 73-80. [84] DAVIS K M, TOMOZAWA M. Water diffusion into silica glass: structural changes in silica glass and their effect on water solubility and diffusivity[J]. Journal of Non-Crystalline Solids, 1995, 185(3): 203-220. [85] AGARWAL A, TOMOZAWA M. Surface and bulk structural relaxation kinetics of silica glass[J]. Journal of Non-Crystalline Solids, 1997, 209(3): 264-272. [86] TOMOZAWA M, LI H, DAVIS K M. Water diffusion, oxygen vacancy annihilation and structural relaxation in silica glasses[J]. Journal of Non-Crystalline Solids, 1994, 179: 162-169. [87] AMMA S I, KIM S H, PANTANO C G. Analysis of water and hydroxyl species in soda lime glass surfaces using attenuated total reflection (ATR)-IR spectroscopy[J]. Journal of the American Ceramic Society, 2016, 99(1): 128-134. [88] GEISLER T, DOHMEN L, LENTING C, et al. Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy[J]. Nature Materials, 2019, 18(4): 342-348. [89] GIN S, MIR A H, JAN A, et al. A general mechanism for gel layer formation on borosilicate glass under aqueous corrosion[J]. The Journal of Physical Chemistry C, 2020, 124(9): 5132-5144. [90] 魏子雅, 顾少轩, 王晓伟, 等. 玻璃与水的相互作用过程和机理探索[J]. 硅酸盐通报, 2022, 41(11): 4049-4055. WEI Z Y, GU S X, WANG X W, et al. Study on the interaction process and mechanism between glass and water[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4049-4055 (in Chinese). [91] TOMOZAWA M, HEPBURN R W. Surface structural relaxation of silica glass: a possible mechanism of mechanical fatigue[J]. Journal of Non-Crystalline Solids, 2004, 345/346: 449-460. [92] 许 杰, 吴云龙, 赵芳红, 等. 工程应力分布玻璃研究进展[J]. 硅酸盐学报, 2009, 37(12): 2135-2141. XU J, WU Y L, ZHAO F H, et al. Research progress in engineered stress profile glass[J]. Journal of the Chinese Ceramic Society, 2009, 37(12): 2135-2141 (in Chinese). |
[1] | 吴胜坤, 黄天勇, 谢岩, 王展鹏, 包琦, 张敏, 叶航, 刘琦. 二氧化碳矿化养护水泥基材料研究进展[J]. 硅酸盐通报, 2023, 42(6): 1897-1911. |
[2] | 殷实, 李北星, 陈鹏博, 金德川. 再生砂混凝土毛细吸水特性研究[J]. 硅酸盐通报, 2023, 42(4): 1205-1216. |
[3] | 修建得, 金祖权, 李宁, 侯保荣. 海洋盐雾环境下混凝土中氯离子传输研究进展[J]. 硅酸盐通报, 2023, 42(3): 771-785. |
[4] | 唐咸远, 马杰灵, 罗杰, 何滨冰, 陆澄剑. 钢渣微粉生态型超高性能混凝土力学性能影响因素分析[J]. 硅酸盐通报, 2023, 42(2): 607-617. |
[5] | 李茂森, 王露, 王军, 李曦, 徐芬莲, 刘数华. 大掺量矿物掺合料混凝土碳化行为研究进展[J]. 硅酸盐通报, 2023, 42(11): 3787-3798. |
[6] | 张研, 王鹏鹏, 吴哲康. 基于相关向量机模型的混凝土综合性能预测[J]. 硅酸盐通报, 2022, 41(1): 118-125. |
[7] | 栗培龙, 王霄, 孙胜飞, 马云飞. 不同制备方法的橡胶沥青黏度特性对比分析[J]. 硅酸盐通报, 2021, 40(9): 3159-3167. |
[8] | 石鑫, 徐玲玲, 冯涛, 韩健, 张盼. 水分散聚合物乳液改性水泥砂浆的研究进展[J]. 硅酸盐通报, 2021, 40(8): 2497-2507. |
[9] | 代蒙, 黄帮福, 李露, 汪德富, 杨征宇, 罗枫, 冶富银, 李明. 氨法脱硫中影响硫酸铵结晶的主要因素[J]. 硅酸盐通报, 2021, 40(2): 505-512. |
[10] | 史天尧, 陈星宇, 张敏, 刘倩. 水泥基材料中氯离子结合机理及其影响因素研究进展[J]. 硅酸盐通报, 2021, 40(1): 13-24. |
[11] | 薛伶俐;黎红兵;高云龙;李胜伟. 磷酸镁水泥基材料与混凝土粘结性能研究进展[J]. 硅酸盐通报, 2020, 39(9): 2724-2731. |
[12] | 王帅, 宋方祥, 张黎, 张雪, 李焱. 不同形貌介孔二氧化硅纳米材料控制制备及应用研究进展[J]. 硅酸盐通报, 2019, 38(7): 2109-2117. |
[13] | 黄达;陈宣东;刘光焰;王晓峰;高鹏飞. 废弃玻璃混凝土ASR危害的研究进展[J]. 硅酸盐通报, 2019, 38(6): 1792-180. |
[14] | 赵文丽;鲍泽威;黄卫星;闫栋. 膨胀石墨压块的制备及其导热性能研究[J]. 硅酸盐通报, 2019, 38(6): 1855-186. |
[15] | 杨丽韫;孟凡绪;袁鹏;钱晓明;李书武;白皓;李宏. 粉煤灰合成分子筛主要工艺的研究进展[J]. 硅酸盐通报, 2019, 38(3): 664-672. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||