硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (2): 649-658.
所属专题: 陶瓷
许明浩1,2, 花开慧1,3, 曾群2, 邸博1,3, 郑愚1,3, 汪洪祥4, 张国祥4
收稿日期:
2023-08-31
修订日期:
2023-10-16
出版日期:
2024-02-15
发布日期:
2024-02-05
通信作者:
花开慧,博士,副教授。E-mail:huakh@dgut.edu.cn
作者简介:
许明浩(1999—),男,硕士研究生。主要从事压电材料与器件的研究。E-mail:2399574546@qq.com
基金资助:
XU Minghao1,2, HUA Kaihui1,3, ZENG Qun2, DI Bo1,3, ZHENG Yu1,3, WANG Hongxiang4, ZHANG Guoxiang4
Received:
2023-08-31
Revised:
2023-10-16
Online:
2024-02-15
Published:
2024-02-05
摘要: 钛酸钡(BaTiO3)和铌酸钾钠(K0.5Na0.5NbO3)压电陶瓷因具有环境友好、电学性能良好、居里温度较好等优势而成为国际高新技术材料研究的前沿热点,有望替代部分铅基压电陶瓷应用于国防、航空航天、通信等领域的电子器件中。本文综述了BaTiO3和K0.5Na0.5NbO3压电陶瓷材料的最新研究进展,从构造相界调控压电性能、BaTiO3基压电陶瓷的材料体系设计、K0.5Na0.5NbO3基压电陶瓷的热稳定性及改善、压电陶瓷的新型成型及烧结工艺等方面进行客观分析和总结,并展望了两种材料的未来发展趋势,为开发高性能无铅压电陶瓷提供参考。
中图分类号:
许明浩, 花开慧, 曾群, 邸博, 郑愚, 汪洪祥, 张国祥. 钛酸钡与铌酸钾钠无铅压电陶瓷研究进展[J]. 硅酸盐通报, 2024, 43(2): 649-658.
XU Minghao, HUA Kaihui, ZENG Qun, DI Bo, ZHENG Yu, WANG Hongxiang, ZHANG Guoxiang. Research Progress of Barium Titanate and Potassium Sodium Niobate Lead-Free Piezoelectric Ceramics[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 649-658.
[1] ZHENG T, WU J G, XIAO D Q, et al. Recent development in lead-free perovskite piezoelectric bulk materials[J]. Progress in Materials Science, 2018, 98: 552-624. [2] SEKHAR M C, VEENA E, KUMAR N S, et al. A review on piezoelectricmaterialsand their applications[J]. Crystal Research and Technology, 2023, 58(2): 2200130. [3] JAFFE B, ROTH R S, MARZULLO S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics[J]. Journal of Applied Physics, 1954, 25(6): 809-810. [4] DAMJANOVIC D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics[J]. Journal of the American Ceramic Society, 2005, 88(10): 2663-2676. [5] HENNINGS D. Barium titanate based ceramic materials for dielectric use[J]. International Journal of High Technology Ceramics, 1987, 3(2): 91-111. [6] BECHMANN R. Elastic, piezoelectric, and dielectric constants of polarized Barium titanate ceramics and some applications of the piezoelectric equations[J]. The Journal of the Acoustical Society of America, 1956, 28(3): 347-350. [7] LIU Y C, CHANG Y F, LI F, et al. Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba,Ca)(Ti,Zr)O3 through integrating crystallographic texture and domain engineering[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29863-29871. [8] YIN H M, XU W J, ZHOU H W, et al. Effects of phase composition and grain size on the piezoelectric properties of HfO2-doped barium titanate ceramics[J]. Journal of Materials Science, 2019, 54(19): 12392-12400. [9] RAWAT S, AGARWAL S, SINGH K C. Lead-free (Ba0.88Ca0.12)(Ti0.94Sn0.06)O3 piezoceramics: a comprehensive analysis of the phase evolution and enhancement of electrical properties induced by high energy ball milling[J]. Materials Chemistry and Physics, 2022, 279: 125735. [10] ZHANG Y M, YU Y G, ZHANG N, et al. Simultaneous realization of good piezoelectric and strain temperature stability via the synergic contribution from multilayer design and rare earth doping[J]. Advanced Functional Materials, 2023, 33(11): 2211439. [11] LIU W F, REN X B. Large piezoelectric effect in Pb-free ceramics[J]. Physical Review Letters, 2009, 103(25): 257602. [12] ZHAO C L, WU H J, LI F, et al. Practical high piezoelectricity in Barium titanate ceramics utilizing multiphase convergence with broad structural flexibility[J]. Journal of the American Chemical Society, 2018, 140(45): 15252-15260. [13] WU J G. Perovskite lead-free piezoelectric ceramics[J]. Journal of Applied Physics, 2020, 127(19): 190901. [14] BIJALWAN V, HUGHES H, POOLADVAND H, et al. The effect of sintering temperature on the microstructure and functional properties of BCZT-xCeO2 lead free ceramics[J]. Materials Research Bulletin, 2019, 114: 121-129. [15] WANG X J, HUAN Y, ZHU Y X, et al. Defect engineering of BCZT-based piezoelectric ceramics with high piezoelectric properties[J]. Journal of Advanced Ceramics, 2022, 11(1): 184-195. [16] KOU Q W, YANG B, SUN Y, et al. Tetragonal (Ba,Ca)(Zr,Ti)O3 textured ceramics with enhanced piezoelectric response and superior temperature stability[J]. Journal of Materiomics, 2022, 8(2): 366-374. [17] JAIBAN P, THEETHUAN T, KHUMTRONG S, et al. The effects of donor (Nb5+) and acceptor (Cu2+, Zn2+, Mn2+, Mg2+) doping at B-site on crystal structure, microstructure, and electrical properties of (Ba0.85Ca0.15)Zr0.1Ti0.9O3 ceramics[J]. Journal of Alloys and Compounds, 2022, 899: 162909. [18] ZHOU C, ZHANG Q W, CAI W, et al. Cooling rate-dependent microstructure and electrical properties of BCZT ceramics[J]. Materials Science in Semiconductor Processing, 2022, 150: 106950. [19] HUANG Y L, ZHAO C L, WU B, et al. Grain size effects and structure origin in high-performance BaTiO3-based piezoceramics with large grains[J]. Journal of the European Ceramic Society, 2022, 42(6): 2764-2771. [20] BIJALWAN V, TOFEL P, SPOTZ Z, et al. Processing of 0. 55(Ba0.9Ca0.1)TiO3-0. 45Ba(Sn0.2Ti0.8)O3 lead-free ceramics with high piezoelectricity[J]. Journal of the American Ceramic Society, 2020, 103(8): 4611-4624. [21] GAIED A I, DAHRI A, PERRIN V, et al. Synergistic effects of Zn B-site substitution in lead-free Ba0.95Ca0.05Ti0.92Sn0.08O3 ferroelectric ceramics for enhancing piezoelectric properties in energy harvesting applications[J]. Journal of Alloys and Compounds, 2023, 958: 170419. [22] LAISHRAM R, RAJPUT S, SINGH K C. Particle-size-induced high piezoelectricity in (Ba0.88Ca0.12)(Ti0.94Sn0.06)O3 piezoceramics prepared from nanopowders[J]. Journal of Alloys and Compounds, 2020, 812: 152128. [23] HU X H, GAO J H, WANG Y, et al. Reversible domain-wall-motion-induced low-hysteretic piezoelectric response in ferroelectrics[J]. The Journal of Physical Chemistry C, 2019, 123(25): 15434-15440. [24] WANG S F, LIU Q B, CAI E P, et al. Relaxor behavior and superior ferroelectricity of Y2O3-doped (Ba0.98Ca0.02)(Ti0.94Sn0.04Zr0.02)O3 lead-free ceramics[J]. Journal of Rare Earths, 2022, 40(6): 942-951. [25] ZHAO T X, QIU J H, MA M G, et al. Electrical properties of Ba0.96Ca0.04Ti0.90Sn0.10O3 lead-free ceramics with the addition of nano-CeO2[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(9): 5661-5666. [26] BAEK J S, KOH J H. Distortion control of (1-x)Ba(Hf, Ti)O3-x(Ba,Ca)TiO3 piezoelectric ceramics to improved piezoelectric properties and related Curie temperature[J]. Journal of Alloys and Compounds, 2022, 898: 162811. [27] WANG W, MA Y B, JING R Y, et al. Concentration-driving pinning effect in lead-free Mn-substituted BCZT ferroelectric ceramics[J]. Ceramics International, 2023, 49(20): 33324-33332. [28] LIU C, MAO R Y, WU Q Y, et al. Modification of BCZT piezoelectric ceramics by modulating oxygen vacancies in different sintering atmospheres[J]. AIP Advances, 2023, 13(6): 065217. [29] WANG X J, HUAN Y, JI S J, et al. Ultra-high piezoelectric performance by rational tuning of heterovalent-ion doping in lead-free piezoelectric ceramics[J]. Nano Energy, 2022, 101: 107580. [30] LI C, BAEK J S, KOH J H. Ce and Y Co-doping effects for (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics[J]. Coatings, 2021, 11(10): 1248. [31] TIAN Y S, MA M Y, LI S Y, et al. Piezoelectricity and thermophysical properties of Ba0.90Ca0.10Ti0.96Zr0.04O3 ceramics modified with amphoteric Nd3+ and Y3+ dopants[J]. Materials, 2023, 16(6): 2369. [32] FU J, XIE A W, LI T Y, et al. Ultrahigh piezoelectricity in (Ba,Ca)(Ti,Sn)O3 lead-free compounds with enormous domain wall contribution[J]. Acta Materialia, 2022, 230: 117862. [33] PENG S Q, ZENG F F, WANG Y Y, et al. Structure and electrical properties in Sb-doped Ba0.93Ca0.07Ti0.92Sn0.08O3 ceramics near the phase coexistence point[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(19): 16235-16246. [34] GUO F Y, CAI W, GAO R L, et al. Microstructure, enhanced relaxor-like behavior and electric properties of (Ba0.85Ca0.15)(Zr0.1-xHfxTi0.9)O3 ceramics[J]. Journal of Electronic Materials, 2019, 48(5): 3239-3247. [35] CHEN K, MA J, WU J, et al. Large piezoelectric performance in zirconium doped Ba0.86Sr0.14TiO3 lead-free ceramics through utilizing multiphase coexistence[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(20): 18336-18341. [36] WANG D W, FAN Z M, RAO G H, et al. Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design[J]. Nano Energy, 2020, 76: 104944. [37] SHI J K, LIU J Y, XIE S X, et al. Dopant tuned multi-functionality in Barium titanate based lead-free piezoceramics[J]. Journal of Alloys and Compounds, 2023, 942: 169092. [38] ZHAO C L, WU B, THONG H C, et al. Improved temperature stability and high piezoelectricity in lead-free Barium titanate-based ceramics[J]. Journal of the European Ceramic Society, 2018, 38(16): 5411-5419. [39] WU W J, MA J, WANG N N, et al. Electrical properties, strain stability and electrostrictive behavior in 0.5BaZr0.2Ti0.8O3-(0. 5-x)Ba0.7Ca0.3TiO3-xBa0.7Sr0.3TiO3 lead-free ceramics[J]. Journal of Alloys and Compounds, 2020, 814: 152240. [40] CAI E P, LIU Q B, GU H Z. Optimization of the electrical properties on lead-free Barium titanate-based piezoelectric by combining grain growth with orthorhombic-tetragonal phase boundary[J]. Journal of Alloys and Compounds, 2023, 948: 169775. [41] LV X, ZHU J G, XIAO D Q, et al. Emerging new phase boundary in potassium sodium-niobate based ceramics[J]. Chemical Society Reviews, 2020, 49(3): 671-707. [42] TAO H, WU H J, LIU Y, et al. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence[J]. Journal of the American Chemical Society, 2019, 141(35): 13987-13994. [43] WU L J, ZHENG T, WU J G. Structural origin of excellent fatigue resistance in KNN-based ceramics with multiphase coexistence[J]. Journal of the European Ceramic Society, 2024, 44(1): 205-214. [44] SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87. [45] ZHANG N, ZHENG T, WU J G. Lead-free (K,Na)NbO3-based materials: preparation techniques and piezoelectricity[J]. ACS Omega, 2020, 5(7): 3099-3107. [46] WANG X P, WU J G, XIAO D Q, et al. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics[J]. Journal of the American Chemical Society, 2014, 136(7): 2905-2910. [47] XU K, LI J, LV X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics[J]. Advanced Materials, 2016, 28(38): 8519-8523. [48] WU J G. Advances in lead-free piezoelectric materials[M]. Singapore: Springer, 2018. [49] QI X C, REN P R, TONG X Q. Effect of heterovalent-ion doping and oxygen-vacancy regulation on piezoelectric properties of KNN based lead-free ceramics[J]. Ceramics International, 2023, 49(22): 34795-34804. [50] LIU Q, PAN E, DENG H, et al. Enhanced piezoelectricity and non-contact optical temperature sensing performance in Er3+ ion modified (K,Na)NbO3-based multifunctional ceramics[J]. Ceramics International, 2023, 49(10): 14981-14988. [51] LIU T, CHEN Y, ZHENG Z S, et al. The high nano-domain improves the piezoelectric properties of KNN lead-free piezo-ceramics[J]. Ceramics International, 2023, 49(15): 25035-25042. [52] LI R C, ZENG Y S, SUN X X, et al. Multidimensional synergy-induced high piezoelectricity and reliability KNN piezoceramics for high-frequency ultrasonic transducers[J]. Science China Materials, 2023, 66(2): 686-695. [53] CEN Z Y, CAO F Z, FENG M Y, et al. Simultaneously improving piezoelectric strain and temperature stability of KNN-based ceramics via defect design[J]. Journal of the European Ceramic Society, 2023, 43(3): 939-946. [54] HUAN Y, WANG X J, YANG W Y, et al. Optimizing energy harvesting performance by tailoring ferroelectric/relaxor behavior in KNN-based piezoceramics[J]. Journal of Advanced Ceramics, 2022, 11(6): 935-944. [55] JIA P W, ZHENG Z S, LI Y L, et al. The achieving enhanced piezoelectric performance of KNN-based ceramics: decisive role of multi-phase coexistence induced by lattice distortion[J]. Journal of Alloys and Compounds, 2023, 930: 167416. [56] HE B, LIU W P, ZHOU B W, et al. Softening effect of trace Fe-substituted potassium-sodium niobate-based lead-free piezoceramics[J]. Journal of Alloys and Compounds, 2022, 909: 164718. [57] CHEN K, MA J, SHI C Y, et al. Enhanced temperature stability in high piezoelectric performance of (K,Na)NbO3-based lead-free ceramics trough co-doped antimony and tantalum[J]. Journal of Alloys and Compounds, 2021, 852: 156865. [58] XIE Y N, XING J, TAN Z, et al. High mechanical quality factor and piezoelectricity in potassium sodium niobate ceramics[J]. Ceramics International, 2022, 48(5): 6565-6573. [59] XIE L X, CHEN H, XIE Y N, et al. The roles of Sn4+ in affecting performance of Potassium Sodium Niobate ceramics[J]. Journal of Alloys and Compounds, 2022, 899: 163290. [60] SHI C Y, MA J, WU J, et al. Coexistence of excellent piezoelectric performance and high Curie temperature in KNN-based lead-free piezoelectric ceramics[J]. Journal of Alloys and Compounds, 2020, 846: 156245. [61] QIAO L, LI G, TAO H, et al. Full characterization for material constants of a promising KNN-based lead-free piezoelectric ceramic[J]. Ceramics International, 2020, 46(5): 5641-5644. [62] WU B, ZHAO L, MA J, et al. Insights into the correlation between ionic characteristics and microstructure and multiferroic properties in KNN-based ceramics with BiMO3 modification[J]. Journal of Alloys and Compounds, 2023, 966: 171568. [63] SALMANOV S, KOBLAR M, KMET B, et al. Structure and electrical properties of cold-sintered strontium-doped potassium sodium niobate[J]. Journal of the European Ceramic Society, 2023, 43(16): 7516-7523. [64] TRIPATHY D, CHAKROBORTY S, GADTYA A S, et al. Enhanced dielectric and electrical performance of phosphonic acid-modified tantalum (Ta)-doped potassium sodium niobate (KNaNbO3)-P(VDF-HFP) composites[J]. The European Physical Journal E, 2023, 46(3): 21. [65] TAN L M, WANG X C, ZHU W J, et al. Excellent piezoelectric performance of KNNS-based lead-free piezoelectric ceramics through powder pretreatment by hydrothermal method[J]. Journal of Alloys and Compounds, 2021, 874: 159770. [66] LV X, ZHANG N, MA Y C, et al. Coupling effects of the A-site ions on high-performance potassium sodium niobate ceramics[J]. Journal of Materials Science & Technology, 2022, 130: 198-207. [67] ZHOU J S, WANG K, YAO F Z, et al. Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity[J]. Journal of Materials Chemistry C, 2015, 3(34): 8780-8787. [68] ZHANG M H, ZHANG Q H, YU T T, et al. Enhanced electric-field-induced strains in (K,Na)NbO3 piezoelectrics from heterogeneous structures[J]. Materials Today, 2021, 46: 44-53. [69] LV X, WU J G, ZHANG X X. A new concept to enhance piezoelectricity and temperature stability in KNN ceramics[J]. Chemical Engineering Journal, 2020, 402: 126215. [70] HUANG Y L, ZHAO C L, WU B, et al. Diffused and successive phase transitions of (K,Na)NbO3-based ceramics with high strain and temperature insensitivity[J]. Journal of the American Ceramic Society, 2019, 102(5): 2648-2657. [71] YAO F Z, WANG K, JO W, et al. Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics[J]. Advanced Functional Materials, 2016, 26(8): 1217-1224. [72] HUO X T, WANG F C, ZHANG T H, et al. A dispersed polycrystalline phase boundary constructed in CaZrO3 modified KNN based ceramics with both excellent piezoelectric properties and thermal stability[J]. Ceramics International, 2023, 49(10): 15751-15760. [73] ZHOU C M, ZHANG J L, YAO W Z, et al. Highly temperature-stable piezoelectric properties of 0. 96(K0.48Na0.52)(Nb0.96Sb0.04)O3-0. 03BaZrO3-0. 01(Bi0.50Na0.50)ZrO3 ceramic in common usage temperature range[J]. Scripta Materialia, 2019, 162: 86-89. [74] YANG W W, LI P, LI F, et al. Enhanced piezoelectric performance and thermal stability of alkali niobate-based ceramics[J]. Ceramics International, 2019, 45(2): 2275-2280. [75] LIU Q, ZHANG Y C, ZHAO L, et al. Simultaneous enhancement of piezoelectricity and temperature stability in (K,Na)NbO3-based lead-free piezoceramics by incorporating perovskite zirconates[J]. Journal of Materials Chemistry C, 2018, 6(39): 10618-10627. [76] DONG Z H, ZHAO P Y, MA X, et al. Excellent strain properties in (K,Na)NbO3-based piezoceramics induced by lamination composite strategy[J]. Chemical Engineering Journal, 2023, 472: 144763. [77] YI S L, ZHANG W K, GAO G P, et al. Structural design and properties of fine scale 2-2-2 PZT/epoxy piezoelectric composites for high frequency application[J]. Ceramics International, 2018, 44(9): 10940-10944. [78] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661-687. [79] HE Z X, GONG X T, LIU C L, et al. Preparation and properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics via vat photopolymerization[J]. Additive Manufacturing, 2022, 59: 103170. [80] RENTERIA A, BALCORTA V H, MARQUEZ C, et al. Direct ink write multi-material printing of PDMS-BTO composites with MWCNT electrodes for flexible force sensors[J]. Flexible and Printed Electronics, 2022, 7(1): 015001. [81] MARIANI M, BELTRAMI R, MIGLIORI E, et al. Additive manufacturing of lead-free KNN by binder jetting[J]. Journal of the European Ceramic Society, 2022, 42(13): 5598-5605. [82] WEI X X, LIU Y H, ZHAO D J, et al. 3D printing of piezoelectric Barium titanate with high density from milled powders[J]. Journal of the European Ceramic Society, 2020, 40(15): 5423-5430. |
[1] | 郭威, 庞来学, 王文超, 张佳丽, 王华, 白书霞. 粉煤灰无溶剂法合成方钠石新方法及效果验证[J]. 硅酸盐通报, 2024, 43(2): 584-592. |
[2] | 薛兴勇, 韩要丛, 苏俏俏, 徐梦雪, 崔学民. 铜渣基磷酸盐胶凝材料的力学性能与微观结构[J]. 硅酸盐通报, 2023, 42(5): 1750-1757. |
[3] | 李玮, 周昌荣, 黎清宁, 李蕊, 侯凌浩, 孟天笑. Fe2O3原料的预处理对0.7BiFeO3-0.3BaTiO3陶瓷绝缘性与电性能的影响[J]. 硅酸盐通报, 2022, 41(6): 2126-2133. |
[4] | 王化中, 杨宇, 夏莉红, 尹成, 朱学宏, 丰雪帆, 张福勤. BaTiO3改性对碳/碳复合材料力学性能的影响[J]. 硅酸盐通报, 2022, 41(3): 1002-1011. |
[5] | 戴书云, 钟诗琪, 张欢, 朱培树, 李甜, 刘杰, 郑兴华. X8R型BaTiO3基细晶陶瓷的制备、结构和性能[J]. 硅酸盐通报, 2022, 41(12): 4412-4418. |
[6] | 郭宏伟, 白赟, CHI Longxing, 赵志龙, 刘帅, 王毅, 李荣悦. La2O3掺杂SiO2-B2O3-Nb2O5复相微晶玻璃相界及储能性能研究[J]. 硅酸盐通报, 2022, 41(11): 3826-3833. |
[7] | 徐美姿, 王兵兵, 顾少轩, 黄欣, 陶海征. ZnO·Al2O3·nSiO2玻璃抗裂纹萌生能力反常演化的结构起源探索[J]. 硅酸盐通报, 2022, 41(11): 4067-4074. |
[8] | 包国翠, 李坤, 杨光, 崔佳宁, 施东良, 林国豪, 方必军. 镧掺杂PMN-PT陶瓷在准同型相界处的相组成调控[J]. 硅酸盐通报, 2022, 41(10): 3647-3657. |
[9] | 李秀英, 陶歆月, 肖卓豪, 贺一峰, 李朝圆, 夏莹, 孔令兵. 高稳定性SrF2-Na2O-Fe2O3-P2O5体系氟磷酸盐玻璃的制备与表征[J]. 硅酸盐通报, 2022, 41(10): 3699-3707. |
[10] | 商珂, 王俊胜, 赵璧, 吴颖捷, 林贵德, 赵婧, 金星, 刘丹. 高固含量聚硅酸钾基防火凝胶及其在复合防火玻璃中的应用[J]. 硅酸盐通报, 2021, 40(4): 1344-1351. |
[11] | 袁高峰, 崔瑞瑞, 张鑫, 邓朝勇. Li+掺杂浓度对Sr3ZnNb2O9:Eu3+荧光粉发光特性的影响[J]. 硅酸盐通报, 2021, 40(12): 4128-4136. |
[12] | 王力, 张增平, 朱友信, 刘浩, 陈俐企, 班孝义. PAPI型聚氨酯改性沥青性能与微观机理[J]. 硅酸盐通报, 2021, 40(12): 4158-4166. |
[13] | 孟保健, 朱永昌, 焦云杰, 赵崇, 万伟, 韩勖, 崔竹, 杨德博. 模拟高放废液玻璃固化体析晶性能研究[J]. 硅酸盐通报, 2021, 40(10): 3516-3522. |
[14] | 于长清;余悠然;赵英民;巢雄宇;袁武华. 稀土氧化物RE2O3(RE=La,Ce,Gd,Yb)掺杂氧化钇稳定氧化锆气凝胶相稳定性与晶粒生长分析[J]. 硅酸盐通报, 2020, 39(5): 1620-1626. |
[15] | 李争光;刘向春;邓韬;白宁娜;张叶雯. 熔融氯化盐传蓄热性能的研究[J]. 硅酸盐通报, 2020, 39(3): 950-956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||