硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (2): 637-648.
所属专题: 陶瓷
王蒙蒙, 隋学叶, 綦开宇, 徐杰, 刘瑞祥, 周长灵, 唐文哲, 段晓峰, 李占峰
收稿日期:
2023-08-17
修订日期:
2023-09-21
出版日期:
2024-02-15
发布日期:
2024-02-05
通信作者:
隋学叶,教授级高级工程师。E-mail:sxy001@126.com
作者简介:
王蒙蒙(1994—),女,工程师。主要从事气凝胶隔热材料的研究。E-mail:1076924497@qq.com
WANG Mengmeng, SUI Xueye, QI Kaiyu, XU Jie, LIU Ruixiang, ZHOU Changling, TANG Wenzhe, DUAN Xiaofeng, LI Zhanfeng
Received:
2023-08-17
Revised:
2023-09-21
Online:
2024-02-15
Published:
2024-02-05
摘要: 多孔陶瓷内部具有大量相通或封闭孔隙,孔径和孔隙的分布及连通性等微观结构特征对材料的物理性能起着重要作用。本文介绍了多孔陶瓷隔热材料的优良特性及广泛的应用前景,并总结了近几年多孔陶瓷隔热材料的制备方法及研究进展,提出了多孔陶瓷材料的发展现状及普遍面临的问题,并指出了解决问题的思路,以期为后续开发更多优异性能的多孔陶瓷隔热材料提供参考。
中图分类号:
王蒙蒙, 隋学叶, 綦开宇, 徐杰, 刘瑞祥, 周长灵, 唐文哲, 段晓峰, 李占峰. 多孔陶瓷隔热材料的研究进展[J]. 硅酸盐通报, 2024, 43(2): 637-648.
WANG Mengmeng, SUI Xueye, QI Kaiyu, XU Jie, LIU Ruixiang, ZHOU Changling, TANG Wenzhe, DUAN Xiaofeng, LI Zhanfeng. Research Progress of Porous Ceramic Insulation Material[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 637-648.
[1] WU J T, CHEN H Y, LUO X, et al. Design, fabrication, microstructure, and properties of highly porous alumina whisker foam ceramic[J]. Ceramics International, 2022, 48(2): 2776-2781. [2] CHEN Y, WANG N N, OLA O, et al. Porous ceramics: light in weight but heavy in energy and environment technologies[J]. Materials Science and Engineering Reports, 2021, 143: 100589. [3] 殷加强, 郝晶淼, 张晚春, 等. 微乳液模板法制备多孔陶瓷研究进展[J]. 中国陶瓷, 2020, 56(5): 1-9. YIN J Q, HAO J M, ZHANG W C, et al. Research progress on preparation of porous ceramics via micro-emulsion template[J]. China Ceramic, 2020, 56(5): 1-9 (in Chinese). [4] LIU Y, SHEN H L, ZHANG J J, et al. High strength porous ceramics and its potential in adsorption and building materials: a short process to co-disposal secondary aluminum dross and quicklime[J]. Construction and Building Materials, 2023, 395: 132292. [5] 袁 绮, 谭 划, 杨廷旺, 等. 多孔陶瓷的制备方法及研究现状[J]. 硅酸盐通报, 2021, 40(8): 2687-2701. YUAN Q, TAN H, YANG T W, Et al. Preparation methods and research status of porous ceramics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2687-2701 (in Chinese). [6] LI K Z, LUO J, DONG L H, et al. TiN porous ceramics with excellent electrochemical properties prepared by freeze-drying and in-situ nitridation reaction[J]. Ceramics International, 2022, 48(13): 19017-19025. [7] NISHIHORA R K, RACHADEL P L, QUADRI M G N, et al. Manufacturing porous ceramic materials by tape casting: a review[J]. Journal of the European Ceramic Society, 2018, 38(4): 988-1001. [8] 孙志强. 多孔氧化物陶瓷的可控烧结制备及性能研究[D]. 北京: 中国科学院大学, 2018. SUN Z Q. Controllable sintering and performance study of porous oxide ceramics[D]. Beijing: University of Chinese Academy of Sciences, 2018 (in Chinese). [9] ZHANG B, YANG Y, FAN X L. Processing, microstructure, and properties of porous ceramic composites with directional channels[J]. Journal of Materials Science & Technology, 2024, 168: 1-15. [10] ZHU Y, GUO B, ZUO W R, et al. Effect of sintering temperature on structure and properties of porous ceramics from tungsten ore tailings[J]. Materials Chemistry and Physics, 2022, 287: 126315. [11] HAN L, LI X J, LI F L, et al. Superhydrophilic/air-superoleophobic diatomite porous ceramics for highly-efficient separation of oil-in-water emulsion[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108483. [12] XU S, CHEN L Z, GONG M Q, et al. Characterization and engineering application of a novel ceramic composite insulation material[J]. Composites Part B: Engineering, 2017, 111: 143-147. [13] 杜翠凤, 李利军, 王 远, 等. SiO2气凝胶纤维隔热复合材料的常压制备及性能表征[J]. 硅酸盐通报, 2022, 41(12): 4406-4411+4418. DU C F, LI L J, WANG Y, et al. Atmospheric pressure preparation and property characterization of SiO2 aerogel fiber thermal insulation composites[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4406-4411+4418 (in Chinese). [14] 杜浩然, 邢益强, 李 祥, 等. 纤维和遮光剂对纳米孔粉体隔热材料性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3257-3264. DU H R, XING Y Q, LI X, et al. Effects of fibers and opacifiers on properties of nanoporous powder insulation material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3257-3264 (in Chinese) [15] 郑 彧, 韦中华, 张 阳, 等. 多孔二氧化锆基隔热材料的制备及性能[J]. 硅酸盐通报, 2020, 39(11): 3643-3648. ZHENG Y, WEI Z H, ZHANG Y, et al. Preparation and properties of porous zirconia based thermal insulation materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3643-3648 (in Chinese). [16] LIU R P, XU T T, WANG C G. A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method[J]. Ceramics International, 2016, 42(2): 2907-2925. [17] HWA L C, RAJOO S, NOOR A M, et al. Recent advances in 3D printing of porous ceramics: a review[J]. Current Opinion in Solid State and Materials Science, 2017, 21(6): 323-347. [18] HAI O, XIAO X N, XIE Q B, et al. Preparation of three-dimensionally linked pore-like porous atomized ceramics with high oil and water absorption rates[J]. Journal of the European Ceramic Society, 2023, 43(10): 4530-4540. [19] BOWEN J J, MOORAJ S, GOODMAN J A, et al. Hierarchically porous ceramics via direct writing of preceramic polymer-triblock copolymer inks[J]. Materials Today, 2022, 58: 71-79. [20] DING Y J, ZHANG X Y, WU B Y, et al. Highly porous ceramics production using slags from smelting of spent automotive catalysts[J]. Resources, Conservation and Recycling, 2021, 166: 105373. [21] HAMMEL E C, IGHODARO O L R, OKOLI O I. Processing and properties of advanced porous ceramics: an application based review[J]. Ceramics International, 2014, 40(10): 15351-15370. [22] ZHANG F, LI Z A, XU M J, et al. A review of 3D printed porous ceramics[J]. Journal of the European Ceramic Society, 2022, 42(8): 3351-3373. [23] WANG S Y, YANG Z, LUO X D, et al. Preparation of calcium hexaluminate porous ceramics by gel-casting method with polymethyl methacrylate as pore-forming agent[J]. Ceramics International, 2022, 48(20): 30356-30366. [24] ZHANG H H, LIU H, ZHU M, et al. Selective microwave absorption of SiC-Si3N4 porous ceramics prepared by sacrificial template method[J]. Ceramics International, 2023, 49(16): 27604-27613. [25] ÇELIK A, ÇAǦLAR G, ÇELIK Y. Fabrication of porous Al2O3 ceramics using carbon black as a pore forming agent by spark plasma sintering[J]. Ceramics International, 2022, 48(19): 28181-28190. [26] HEICHEL D N. Method of making a ceramic article having open porous interior: H48[P]. 1986-04-01. [27] 杨 昊, 董 博, 余 超, 等. 有机泡沫浸渍法制备铸钢用泡沫陶瓷过滤器的研究进展[J]. 陶瓷学报, 2023, 44(4): 662-670. YANG H, DONG B, YU C, et al. Progress in the preparation of ceramic foam filters for cast steel with polymer sponge replica technique[J]. Journal of Ceramics, 2023, 44(4): 662-670 (in Chinese). [28] 杨春艳, 卢 淼, 刘培生. 多孔隔热陶瓷的研究进展[J]. 陶瓷学报, 2014, 35(2): 132-138. YANG C Y, LU M, LIU P S. The research progress of porous heat-resistant ceramic[J]. Journal of Ceramics, 2014, 35(2): 132-138 (in Chinese). [29] HAN L, CHEN Y, CHANG H, et al. One-pot foam-gelcasting/nitridation synthesis of high porosity nano-whiskers based 3D Si3N4 porous ceramics[J]. Journal of the European Ceramic Society, 2021, 41(12): 6070-6074. [30] CAO J J, LI W F, GUO H S, et al. Effects of nano-CaCO3 and nano-iron phosphate on microstructure and properties of SiO2 porous ceramics prepared by direct foaming[J]. Materials Today Communications, 2023, 35: 105690. [31] ZHANG X, HE J F, HAN L, et al. Foam gel-casting preparation of SiC bonded ZrB2 porous ceramics for high-performance thermal insulation[J]. Journal of the European Ceramic Society, 2023, 43(1): 37-46. [32] 刘文进, 周国相, 林坤鹏, 等. 基于浆料形态的陶瓷3D打印技术的浆料体系研究进展[J]. 硅酸盐通报, 2021, 40(6): 1918-1926. LIU W J, ZHOU G X, LIN K P, et al. Research progress on slurry system of ceramic 3D printing technology based on slurry morphology[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1918-1926 (in Chinese). [33] 郑江涛. 高性能陶瓷光固化3D打印技术研究[D]. 上海: 上海交通大学, 2021. ZHENG J T. Research on 3D printing technology of high performance ceramic curing[D]. Shanghai: Shanghai Jiao Tong University, 2021 (in Chinese). [34] 刘 雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12 LIU Y, CHEN Z W. Research progress in photopolymerization-based 3D printing technology of ceramics[J]. Journal of Materials Engineering, 2020, 48(9): 1-12 (in Chinese) [35] 王守兴, 李 伶, 毕鲁南, 等. 大壁厚3D打印SiO2陶瓷快速制备技术研究[J]. 硅酸盐通报, 2021, 40(6): 1943-1949. WANG S X, LI L, BI L N, et al. Rapid preparation of thick-walled 3D printing silica ceramics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1943-1949 (in Chinese). [36] HOSSAIN S S, BAEK I W, SON H J, et al. 3D printing of porous low-temperature in situ mullite ceramic using waste rice husk ash-derived silica[J]. Journal of the European Ceramic Society, 2022, 42(5): 2408-2419. [37] CHEN H D, PAN Y Y, CHEN B, et al. Fabrication of porous aluminum ceramics beyond device resolution via stereolithography 3D printing[J]. Ceramics International, 2023, 49(11): 18463-18469. [38] ZAHRA M S, HASINA B, STEFAN S, et al. A review on silica aerogel-based materials for acoustic applications[J]. Journal of Non-Crystalline Solids, 2021, 562: 120770. [39] KARAMIKAMKAR S, NAGUIB H E, PARK C B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review[J]. Advances in Colloid and Interface Science, 2020, 276: 102101. [40] LIU Y C, ZHENG P P, WU H J, et al. Preparation and dynamic moisture adsorption of fiber felt/silica aerogel composites with ultra-low moisture adsorption rate[J]. Construction and Building Materials, 2023, 363: 129825. [41] METI P, MAHADIK D B, LEE K Y, et al. Overview of organic-inorganic hybrid silica aerogels: progress and perspectives[J]. Materials & Design, 2022, 222: 111091. [42] MIRMOEINI S S, HOSSEINI S H, LOTFI JAVID A, et al. Essential oil-loaded starch/cellulose aerogel: preparation, characterization and application in cheese packaging[J]. International Journal of Biological Macromolecules, 2023, 244: 125356. [43] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211): 741. [44] NICOLAON G A. Préparation des aérogels de silice à partir d'orthosilicate de méthyle en milieu alcoolique et leurs propriétés[J]. Bulletin de la Société Chimique de France, 1968, 5: 1906-1911. [45] TEWARI P H, HUNT A J, LOFFTUS K D. Ambient-temperature supercritical drying of transparent silica aerogels[J]. Materials Letters, 1985, 3(9/10): 363-367. [46] LI C D, LIU Q S, ZHANG G H, et al. Rapid synthesis of MTES-derived silica aerogel monoliths in Cetyltrimethylammonium bromide/water solvent system by ambient pressure drying[J]. Powder Technology, 2023, 418: 118314. [47] DUAN Y D, WANG L J, LI S Y, et al. Modulating pore microstructure of silica aerogels dried at ambient pressure by adding N-hexane to the solvent[J]. Journal of Non-Crystalline Solids, 2023, 610: 122312. [48] ZHAO C, LI Y K, YE W G, et al. Performance regulation of silica aerogel powder synthesized by a two-step sol-gel process with a fast ambient pressure drying route[J]. Journal of Non-Crystalline Solids, 2021, 567: 120923. [49] 杨柱超. 以有机硅烷为前驱体的二氧化硅弹性气凝胶制备及性能研究[D]. 天津: 天津大学, 2020. YANG Z C. Preparation and properties of silica elastic aerogel with organosilane as precursor[D]. Tianjin: Tianjin University, 2020 (in Chinese). [50] DING J, ZHONG K, LIU S J, et al. Flexible and super hydrophobic polymethylsilsesquioxane based silica aerogel for organic solvent adsorption via ambient pressure drying technique[J]. Powder Technology, 2020, 373: 716-726. [51] 张国强, 赵长兴, 辛 燕, 等. 基于调频连续波太赫兹技术的复合陶瓷隔热瓦无损检测[J]. 无损检测, 2020, 42(12): 29-34. ZHANG G Q, ZHAO C X, XIN Y, et al. Nondestructive inspection for ceramic matrix composite insulation tile based on FMCW terahertz technology[J]. Nondestructive Testing, 2020, 42(12): 29-34 (in Chinese). [52] LÓPEZ PAULA V, HERNÁNDEZ MARÍA F, DIEGO R, et al. Porous acicular mullite ceramics produced from well and poorly crystallized kaolinite[J]. Applied Clay Science, 2023, 238: 106937. [53] CHEN G B, YANG F Y, ZHAO S, et al. Preparation of high-strength porous mullite ceramics and the effect of hollow sphere particle size on microstructure and properties[J]. Ceramics International, 2022, 48(13): 19367-19374. [54] DONG X, ZHENG Y, XIE D W, et al. Multi-functional mullite fiber-based porous ceramics with a multilevel pore structure assembled by alumina platelets and mullite whiskers[J]. Ceramics International, 2023, 49(1): 847-854. [55] QIN Z, XU X J, XU T F, et al. High-strength thermal insulating porous mullite fiber-based ceramics[J]. Journal of the European Ceramic Society, 2022, 42(15): 7209-7218. [56] DU B, HONG C Q, ZHANG X H, et al. Ablation behavior of advanced TaSi2-based coating on carbon-bonded carbon fiber composite/ceramic insulation tile in plasma wind tunnel[J]. Ceramics International, 2018, 44(3): 3505-3510. [57] YANG Y L, FU W Y, CHEN X X, et al. Fabrication of homogeneous mullite-based fiber porous ceramics with high strength and porosity[J]. Journal of the European Ceramic Society, 2022, 42(15): 7219-7227. [58] HE D L, OU D B, GAO H, et al. Thermal insulation and anti-vibration properties of MoSi2-based coating on mullite fiber insulation tiles[J]. Ceramics International, 2022, 48(2): 1844-1850. [59] CAO Y Q, XU X J, QIN Z, et al. Vat photopolymerization 3D printing of thermal insulating mullite fiber-based porous ceramics[J]. Additive Manufacturing, 2022, 60: 103235. [60] TAO X, GUO L L, ZHANG J F, et al. Preparation of La-monazite fiber coating on quartz fiber fabric by a repeated dip-sintering method[J]. Materials Chemistry and Physics, 2022, 279: 125753. [61] ZHOU N, ZHAO M N, XU B S, et al. Effects of fiber aspect ratio and fabrication temperature on the microstructure and mechanical properties of elastic fibrous porous ceramics by press-filtration method[J]. Ceramics International, 2023, 49(7): 11038-11046. [62] WANG H B, QUAN X D, YIN L H, et al. Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2022, 159: 107022. [63] LI L, LIU X L, WANG G, et al. Research progress of ultrafine alumina fiber prepared by sol-gel method: a review[J]. Chemical Engineering Journal, 2021, 421: 127744. [64] LI L, REN H R, LIU Y L, et al. Facile construction of hierarchical porous ultrafine alumina fibers (HPAFs) and its application for dye adsorption[J]. Microporous and Mesoporous Materials, 2020, 308: 110544. [65] DANG W, WANG W H, WU P F, et al. Freeze-cast porous Al2O3 ceramics strengthened by up to 80% ceramics fibers[J]. Ceramics International, 2022, 48(7): 9835-9841. [66] DONG X, AN Q L, ZHANG S P, et al. Porous ceramics based on high-thermal-stability Al2O3-ZrO2 nanofibers for thermal insulation and sound absorption applications[J]. Ceramics International, 2023, 49(19): 31035-31045. [67] CHA H A, JO M G, MOON Y K, et al. Highly porous YSZ ceramic foams using hollow spheres with holes in their shell for high-performance thermal insulation[J]. Journal of the European Ceramic Society, 2023, 43(15): 7041-7052. [68] MATSUDA R M, GUBAREVICH A V, WADA H, et al. Effect of sintering temperature on the characteristics of ceramic hollow spheres produced by sacrificial template technique[J]. Ceramics International, 2016, 42(7): 8409-8412. [69] ZHAO J L, LI J L, ZHANG X F, et al. Fabrication of porous Al2TiO5-Al2O3 ceramics using Al2O3 hollow spheres coated with TiO2 sol[J]. Ceramics International, 2022, 48(19): 27349-27359. [70] LIAO X, CHEN L, XIE Y, et al. Thermal properties of mullite based porous ceramics derived from high silica tailings obtained after extracting alumina from high alumina coal ash[J]. Journal of Physics and Chemistry of Solids, 2023, 180: 111465. [71] YANG F Y, ZHAO S, CHEN G B, et al. High-strength, multifunctional and 3D printable mullite-based porous ceramics with a controllable shell-pore structure[J]. Advanced Powder Materials, 2024, 3(1): 100153. [72] YUN S J, KIM J H, JANG J, et al. Fabrication of highly porous and adhesive thick Y2O3 film by room-temperature spray process for thermal insulation coating[J]. Ceramics International, 2023, 49(10): 16216-16224. [73] JIANG C, ZHU Z H, CHEN J. Laser texturing at interface for improved strain tolerance and thermal insulation performance of thermal barrier coatings[J]. Surface and Coatings Technology, 2023, 459: 129385. [74] PAKSERESHT A, SHARIFIANJAZI F, ESMAEILKHANIAN A, et al. Failure mechanisms and structure tailoring of YSZ and new candidates for thermal barrier coatings: a systematic review[J]. Materials & Design, 2022, 222: 111044. [75] YAN G, SUN Y, ZHAO X L, et al. The enhanced thermal shock resistance performance induced by interface effect in blade-level La2Ce2O7/YSZ thermal barrier coating[J]. Applied Surface Science, 2023, 619: 156723. [76] YANG M, LI Z G, WANG X Y, et al. Effect of spraying ceramic powder pore structure on thermophysical properties of plasma-sprayed thermal barrier coatings[J]. Ceramics International, 2022, 48(1): 1125-1131. [77] WANG J S, SUN J B, ZHANG H, et al. Effect of spraying power on microstructure and property of nanostructured YSZ thermal barrier coatings[J]. Journal of Alloys and Compounds, 2018, 730: 471-482. |
[1] | 李秋, 韦琦, 耿海宁, 李华辉, 陈伟. 低中放射性废物处置用高整体容器密封材料的制备与性能研究[J]. 硅酸盐通报, 2023, 42(7): 2290-2299. |
[2] | 何娅兰, 宁麟, 李炀, 钟秀杰. 基于核磁共振技术对水泥砂浆高温后孔隙结构及水分迁移特征的研究[J]. 硅酸盐通报, 2023, 42(7): 2336-2343. |
[3] | 袁波, 金点石, 陈伟. 基于珊瑚粉晶核效应的碳酸钙水泥制备与性能提升研究[J]. 硅酸盐通报, 2023, 42(5): 1696-1703. |
[4] | 金珊珊, 李傲东, 张扬. 低碱再生骨料植生混凝土吸返水特性表征模型研究[J]. 硅酸盐通报, 2023, 42(5): 1814-1821. |
[5] | 周程涛, 陈波, 高志涵. 冻融环境下泡沫混凝土的单轴压缩特性[J]. 硅酸盐通报, 2023, 42(4): 1233-1241. |
[6] | 葛成龙, 周海龙, 陈岩, 吕志刚. 不同MB值机制砂混凝土的性能和微观孔隙结构[J]. 硅酸盐通报, 2023, 42(3): 888-897. |
[7] | 李贤, 宁麟, 陈亮亮, 李炀, 邓小江. 基于核磁共振技术分析骨料粒径对水泥砂浆微观结构的影响[J]. 硅酸盐通报, 2023, 42(12): 4216-4223. |
[8] | 薛凯喜, 司鹏超, 王天源, 蔡梦莹, 储怡鑫, 胡艳香. 磷石膏基发泡建筑石膏的热传导与强度特性研究[J]. 硅酸盐通报, 2023, 42(12): 4416-4426. |
[9] | 白利忠, 王超男, 程俊, 赵梓彤, 耿佳旺, 李雪峰. 粉煤灰基多孔陶瓷的制备及吸附性能研究[J]. 硅酸盐通报, 2023, 42(11): 4122-4130. |
[10] | 王璨, 彭同江, 孙红娟, 陈涛, 李湘. 石棉尾渣和粉煤灰制备堇青石多孔陶瓷及其理化性能[J]. 硅酸盐通报, 2023, 42(1): 151-161. |
[11] | 李博, 石振武, 刘俊辰, 张洪瑞. 复合改良黄土状亚砂土强度特性及微观机制[J]. 硅酸盐通报, 2023, 42(1): 373-382. |
[12] | 王鑫, 韦明, 刘琨. 球霰石型碳酸钙的调控制备研究进展[J]. 硅酸盐通报, 2022, 41(8): 2860-2870. |
[13] | 李润丰, 刘艳军, 涂玉波, 王林俊, 温晓庆, 任磊. 石墨烯增强复合相变储能材料的热学性能研究[J]. 硅酸盐通报, 2022, 41(7): 2542-2548. |
[14] | 宋向阳, 刘霖, 张永鹏. 聚丙烯酰胺改良土-膨润土的渗透性及对苯酚的吸附[J]. 硅酸盐通报, 2022, 41(6): 2201-2208. |
[15] | 戴时雨, 郝春来, 齐鹏远, 王刚, 赵美, 马伟民, 朱广超, 田怡然, 李莹. 组合处理工艺下硅藻土微观组织演变及孔隙结构变化[J]. 硅酸盐通报, 2022, 41(6): 2209-2216. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||