硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (2): 387-396.
所属专题: 水泥混凝土
• 水泥混凝土 • 下一篇
姜德民, 徐浩东, 康红龙, 胡思宇
收稿日期:
2023-09-21
修订日期:
2023-11-20
出版日期:
2024-02-15
发布日期:
2024-02-05
通信作者:
徐浩东,硕士研究生。E-mail:1596186323@qq.com
作者简介:
姜德民(1968—),男,博士,教授。主要从事植物纤维保温混凝土的研究。E-mail:jdm2004@126.com
基金资助:
JIANG Demin, XU Haodong, KANG Honglong, HU Siyu
Received:
2023-09-21
Revised:
2023-11-20
Online:
2024-02-15
Published:
2024-02-05
摘要: 作为一种新型绿色环保建筑材料,植物纤维增强水泥基复合材料受到了广大科研人员的青睐,但目前仍面临着众多问题。本文归纳总结了在植物纤维增强水泥基复合材料研究中的三大主要问题——植物纤维的高吸水率、植物纤维在水泥基复合材料中的劣化以及植物纤维对水泥基复合材料的阻凝作用,分析了造成这些问题的主要原因,列举了常见的改性方法并深入阐述了相应的改性机理及研究现状,最后展望了植物纤维增强水泥基复合材料的研究前景,以期为今后植物纤维资源化利用提供参考。
中图分类号:
姜德民, 徐浩东, 康红龙, 胡思宇. 植物纤维增强水泥基复合材料面临的问题及相关改性研究现状[J]. 硅酸盐通报, 2024, 43(2): 387-396.
JIANG Demin, XU Haodong, KANG Honglong, HU Siyu. Problems Faced by Plant Fiber Reinforced Cement-Based Composites and Research Status of Its Related Modification[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 387-396.
[1] 饶德梅. 不同烧成温度和时间对水泥熟料矿物相组成的影响[D]. 绵阳: 西南科技大学, 2023. RAO D M. Effect of different sintering temperature and time on mineral phase composition of cement clinker[D]. Mianyang: Southwest University of Science and Technology, 2023 (in Chinese). [2] 宋丁豹, 蒲诃夫, 胡海蓝, 等. 水平排水板真空预压-碱激发矿渣固化联合法处理高含水率淤泥的试验研究[J/OL]. 岩石力学与工程学报: 1-11 [2023-08-31]. https://doi.org/10.13722/j.cnki.jrme.2023.0040. SONG D B, PU K F, HU H L, et al. Experimental investigation on prefabricated horizontal drain-based vacuum preloading-alkali-activated GGBS solidification combined method for treatment of high-water-content mud slurry[J/OL]. Chinese Journal of Rock Mechanics and Engineering: 1-11 [2023-08-31]. http://doi.org/10.13722/j.cnki.jrme.2023.0044 (in Chinese). [3] 李东升, 吴国立, 冯思超. 纤维增强水泥基复合材料力学性能的研究进展[J]. 河南科技, 2023, 42(2): 89-92. LI D S, WU G L, FENG S C. Research progress on mechanical properties of fiber reinforced cement-based composites[J]. Henan Science and Technology, 2023, 42(2): 89-92 (in Chinese). [4] TIAN H, ZHANG Y X. The influence of bagasse fibre and fly ash on the long-term properties of green cementitious composites[J]. Construction and Building Materials, 2016, 111: 237-250. [5] 曹双平, 王 戈, 余 雁, 等. 几种植物单根纤维力学性能对比[J]. 南京林业大学学报(自然科学版), 2010, 34(5): 87-90. CAO S P, WANG G, YU Y, et al. Comparison of mechanical properties of different single vegetable fibers[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2010, 34(5): 87-90 (in Chinese). [6] 杨 玲. 改性稻草秸秆水泥基复合材料的性能研究[D]. 武汉: 武汉轻工大学, 2020. YANG L. Study on properties of modified rice straw cement-based composites[D]. Wuhan: Wuhan Polytechnic University, 2020 (in Chinese). [7] PRAVEENA B A, BURADI A, SANTHOSH N, et al. Study on characterization of mechanical, thermal properties, machinability and biodegradability of natural fiber reinforced polymer composites and its applications, recent developments and future potentials: a comprehensive review[J]. Materials Today: Proceedings, 2022, 52: 1255-1259. [8] 房 新. 乙酰化稻草的制备及其力学性能研究[D]. 沈阳: 东北大学, 2010. FANG X. Preparation and mechanical properties of acetylated rice straw[D]. Shenyang: Northeastern University, 2010 (in Chinese). [9] JIANG D M, AN P H, CUI S P, et al. Effect of modification methods of wheat straw fibers on water absorbency and mechanical properties of wheat straw fiber cement-based composites[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-14. [10] CAMARGO M, ADEFRS T E, ROETHER J, et al. A review on natural fiber-reinforced geopolymer and cement-based composites[J]. Materials, 2020, 13(20): 4603. [11] 姜 欢. 稻草纤维生产水泥基泡沫保温墙体材料的研究[D]. 大连: 大连理工大学, 2008. JIANG H. Study on the production of cement-based foam thermal insulation wall material with straw fiber[D]. Dalian: Dalian University of Technology, 2008 (in Chinese). [12] 杨政险, 李 慷, 张 勇, 等. 天然植物纤维预处理方法对水泥基复合材料性能的影响研究进展[J]. 硅酸盐学报, 2022, 50(2): 522-532. YANG Z X, LI K, ZHANG Y, et al. Effect of pretreatment method of natural plant fibers on properties of cement-based materials-a short review[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 522-532 (in Chinese). [13] ALI-BOUCETTA T, AYAT A, LAIFA W, et al. Treatment of date palm fibres mesh: influence on the rheological and mechanical properties of fibre-cement composites[J]. Construction and Building Materials, 2021, 273: 121056. [14] ROCHA D L, AZEVEDO A R G, MARVILA M T, et al. Influence of different methods of treating natural açai fibre for mortar in rural construction[J]. 2021. [15] PAGE J, KHADRAOUI F, GOMINA M, et al. Influence of different surface treatments on the water absorption capacity of flax fibres: rheology of fresh reinforced-mortars and mechanical properties in the hardened state[J]. Construction and Building Materials, 2019, 199: 424-434. [16] CHOKSHI S, PARMAR V, GOHIL P, et al. Chemical composition and mechanical properties of natural fibers[J]. Journal of Natural Fibers, 2022, 19(10): 3942-3953. [17] WEI J Q, MEYER C. Degradation mechanisms of natural fiber in the matrix of cement composites[J]. Cement and Concrete Research, 2015, 73: 1-16. [18] TOLÊDO F R D, SCRIVENER K, ENGLAND G L, et al. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites[J]. Cement and Concrete Composites, 2000, 22(2): 127-143. [19] BURGERT I, KEPLINGER T. Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis[J]. Journal of Experimental Botany, 2013, 64(15): 4635-4649. [20] BAKAR N, CHIN S C, SIREGAR J P, et al. A review on physical, mechanical, thermal properties and chemical composition of plant fibers[J]. IOP Conference Series: Materials Science and Engineering, 2020, 736(5): 052017. [21] ABU G M, ABDELRASOUL A. Compressive and fracture toughness of natural and synthetic fiber-reinforced polymer[M]//Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Amsterdam: Elsevier, 2019: 123-140. [22] YE Z L, BERSON R E. Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes[J]. Bioresource Technology, 2014, 167: 582-586. [23] DJAFARI P S R. Physical and mechanical properties of natural fibers[M]//Advanced High Strength Natural Fibre Composites in Construction. Amsterdam: Elsevier, 2017: 59-83. [24] MWAIKAMBO L Y, ANSELL M P. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials II. Sisal fibres[J]. Journal of Materials Science, 2006, 41(8): 2497-2508. [25] DRIDI M, HACHEMI S, BELKADI A A. Influence of styrene-butadiene rubber and pretreated hemp fibers on the properties of cement-based repair mortars[J]. European Journal of Environmental and Civil Engineering, 2023, 27(1): 538-557. [26] AZWA Z N, YOUSIF B F, MANALO A C, et al. A review on the degradability of polymeric composites based on natural fibres[J]. Materials & Design, 2013, 47: 424-442. [27] ZHOU J W, LIN S T, ZENG H X, et al. Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction in hydrogels[J]. Materials Horizons, 2020, 7(11): 2936-2943. [28] MOHAMMED M, JAWAD A J M, MOHAMMED A M, et al. Challenges and advancement in water absorption of natural fiber-reinforced polymer composites[J]. Polymer Testing, 2023, 124: 108083. [29] METHACANON P, WEERAWATSOPHON U, SUMRANSIN N, et al. Properties and potential application of the selected natural fibers as limited life geotextiles[J]. Carbohydrate Polymers, 2010, 82(4): 1090-1096. [30] ETALE A, ONYIANTA A J, TURNER S R, et al. Cellulose: a review of water interactions, applications in composites, and water treatment[J]. Chemical Reviews, 2023, 123(5): 2016-2048. [31] JONGVISUTTISUN P, LEISEN J, KURTIS K E. Key mechanisms controlling internal curing performance of natural fibers[J]. Cement and Concrete Research, 2018, 107: 206-220. [32] BUI H, LEVACHER D, BOUTOUIL M, et al. Effects of wetting and drying cycles on microstructure change and mechanical properties of coconut fibre-reinforced mortar[J]. Journal of Composites Science, 2022, 6(4): 102. [33] TOLEDO F R D, DE-ANDRADE S F, FAIRBAIRN E M R, et al. Durability of compression molded sisal fiber reinforced mortar laminates[J]. Construction and Building Materials, 2009, 23(6): 2409-2420. [34] JOHN V M, CINCOTTO M A, SJÖSTRÖM C, et al. Durability of slag mortar reinforced with coconut fibre[J]. Cement and Concrete Composites, 2005, 27(5): 565-574. [35] CHOI Y C. Hydration and internal curing properties of plant-based natural fiber-reinforced cement composites[J]. Case Studies in Construction Materials, 2022, 17: e01690. [36] SEDAN D, PAGNOUX C, SMITH A, et al. Mechanical properties of hemp fibre reinforced cement: influence of the fibre/matrix interaction[J]. Journal of the European Ceramic Society, 2008, 28(1): 183-192. [37] CHOI H, CHOI Y C. Setting characteristics of natural cellulose fiber reinforced cement composite[J]. Construction and Building Materials, 2021, 271: 121910. [38] CLARAMUNT J, ARDANUY M, GARCÍA H J A. Effect of drying and rewetting cycles on the structure and physicochemical characteristics of softwood fibres for reinforcement of cementitious composites[J]. Carbohydrate Polymers, 2010, 79(1): 200-205. [39] ARIVENDAN A, JAPPES W, IRULAPASAMY S, et al. Extraction and characterization of natural aquatic plant fiber, powder and ash from water hyacinth (eichhornia crassipes) as reinforcement of fiber, powder, and ash reinforced polymer composite[J]. Journal of Natural Fibers, 2022, 19(14): 9589-9599. [40] CLARAMUNT J, ARDANUY M, GARCÍA H J A, et al. The hornification of vegetable fibers to improve the durability of cement mortar composites[J]. Cement and Concrete Composites, 2011, 33(5): 586-595. [41] FERREIRA S R, LIMA P R L, SILVA F A, et al. Effect of sisal fiber hornification on the fiber-matrix bonding characteristics and bending behavior of cement based composites[J]. Key Engineering Materials, 2014, 600: 421-432. [42] ALI M R, ABDULLAH U H, ASHAARI Z, et al. Hydrothermal modification of wood: a review[J]. Polymers, 2021, 13(16): 2612. [43] REZAYATI C P, MOHAMMADI R J, Mohebi B, et al. Influence of hydrothermal treatment on the dimensional stability of beech wood[J]. 2007, 2: 125-131. [44] SELLAMI A, MERZOUD M, AMZIANE S. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers[J]. Construction and Building Materials, 2013, 47: 1117-1124. [45] NORUL I M A, PARIDAH M T, ANWAR U M K, et al. Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers[J]. Composites Part B: Engineering, 2013, 45(1): 1251-1257. [46] KABIR M M, WANG H, LAU K T, et al. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview[J]. Composites Part B: Engineering, 2012, 43(7): 2883-2892. [47] JOSEPH P V, JOSEPH K, THOMAS S, et al. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(3): 253-266. [48] LI Q, IBRAHIM L, ZHOU W M, et al. Treatment methods for plant fibers for use as reinforcement in cement-based materials[J]. Cellulose, 2021, 28(9): 5257-5268. [49] NAMONDO B V, ETAPE E P, FOBA T J. Raffia hookeri fiber: effect of alkali treatment on morphology, composition and technological application properties[J]. Journal of Modern Polymer Chemistry and Materials, 2023: 2-3. [50] DE-SOUZA C R, DE-SOUZA L M S, SOUTO F, et al. Effect of alkali treatment on physical-chemical properties of sisal fibers and adhesion towards cement-based matrices[J]. Construction and Building Materials, 2022, 345: 128363. [51] TELI M D, VALIA S P. Acetylation of Jute fiber to improve oil absorbency[J]. Fibers and Polymers, 2013, 14(6): 915-919. [52] ZAMAN H U, KHAN R A. Acetylation used for natural fiber/polymer composites[J]. Journal of Thermoplastic Composite Materials, 2021, 34(1): 3-23. [53] BLEDZKI A K, MAMUN A A, LUCKA G M, et al. The effects of acetylation on properties of flax fibre and its polypropylene composites[J]. Express Polymer Letters, 2008, 2(6): 413-422. [54] OLADELE I O, MICHAEL O S, ADEDIRAN A A, et al. Acetylation treatment for the batch processing of natural fibers: effects on constituents, tensile properties and surface morphology of selected plant stem fibers[J]. Fibers, 2020, 8(12): 73. [55] MOKALOBA N, BATANE R. The effects of mercerization and acetylation treatments on the properties of sisal fiber and its interfacial adhesion characteristics on polypropylene[J]. International Journal of Engineering, Science and Technology, 2014, 6(4): 83. [56] BLEDZKI A K, MAMUN A A, JASZKIEWICZ A, et al. Polypropylene composites with enzyme modified abaca fibre[J]. Composites Science and Technology, 2010, 70(5): 854-860. [57] RIDER A N, ARNOTT D R. Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding[J]. International Journal of Adhesion and Adhesives, 2000, 20(3): 209-220. [58] XIE Y J, HILL C A S, XIAO Z F, et al. Silane coupling agents used for natural fiber/polymer composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(7): 806-819. [59] GAO Y A, CHEN Y, GAO J Q, et al. Properties of Arenga engleri becc palm fiber particles with silane coupling agent KH570 treatments for application in polymer/cement composites[J]. Journal of Natural Fibers, 2022, 19(14): 7348-7362. [60] CASTELLANO M, GANDINI A, FABBRI P, et al. Modification of cellulose fibres with organosilanes: under what conditions does coupling occur?[J]. Journal of Colloid and Interface Science, 2004, 273(2): 505-511. [61] KOOHESTANI B, DARBAN A K, MOKHTARI P, et al. Comparison of different natural fiber treatments: a literature review[J]. International Journal of Environmental Science and Technology, 2019, 16(1): 629-642. [62] BAN Y, ZHI W, FEI M G, et al. Preparation and performance of cement mortar reinforced by modified bamboo fibers[J]. Polymers, 2020, 12(11): 2650. |
[1] | 祝毫华, 杨黎, 刘剑辉, 史才军. 杨木纤维对砂浆流动度、力学性能和自收缩的影响[J]. 硅酸盐通报, 2024, 43(2): 487-494. |
[2] | 朱崟源, 朱干宇, 齐放, 李会泉, 陈艳, 李少鹏, 郭彦霞. 固废基水化硅酸钙制备及综合利用研究进展[J]. 硅酸盐通报, 2024, 43(2): 517-533. |
[3] | 吕绍品, 郑光, 郑宇轩, 聂宏, 周风华. 静水压下白砂岩的动态力学性能研究[J]. 硅酸盐通报, 2024, 43(2): 543-554. |
[4] | 孙彬强, 田茂盛, 谢超, 李彦宵, 安健民. 花岗斑岩石粉高韧性水泥基复合材料性能研究[J]. 硅酸盐通报, 2024, 43(2): 555-563. |
[5] | 燕可洲, 孙向阳, 张鑫泽, 温凯, 郭彦霞, 程芳琴. 循环流化床粉煤灰组成与含量对其水化胶凝性能的影响[J]. 硅酸盐通报, 2024, 43(2): 564-571. |
[6] | 洪侨亨, 贺雄飞, 张明朗, 唐刚, 黄伟. 固废基盾构惰性同步注浆材料力学性能及抗水分散性研究[J]. 硅酸盐通报, 2024, 43(2): 617-626. |
[7] | 陈月顺, 汤成宇. 碳酸钙晶须混杂聚乙烯纤维增强水泥基复合材料力学性能研究[J]. 硅酸盐通报, 2024, 43(1): 16-26. |
[8] | 庞建勇, 郑瑞琪, 胡秀月, 孙健, 徐国平, 苏永强. 高温后冷却方式对玄武岩纤维混凝土力学性能的影响[J]. 硅酸盐通报, 2024, 43(1): 92-101. |
[9] | 杨鑫, 于奎, 吉冯春, 聂堂哲, 李科, 白天. SiO2/KH560改性玄武岩纤维混凝土力学性能研究[J]. 硅酸盐通报, 2024, 43(1): 102-112. |
[10] | 林元明, 林佳福, 熊晓立, 杨政险. TiO2改性钢渣基透水混凝土的力学和NOx降解性能研究[J]. 硅酸盐通报, 2024, 43(1): 191-199. |
[11] | 韩瑜, 赵方粒, 赵翊彤, 王宝民. 矿渣水泥基复合材料在杂散电流作用下的抗软水溶蚀机理研究[J]. 硅酸盐通报, 2024, 43(1): 200-208. |
[12] | 单俊鸿, 张泽, 高鹏, 王奎. 无机胶凝材料改性脱硫建筑石膏性能研究[J]. 硅酸盐通报, 2024, 43(1): 268-275. |
[13] | 张喜飞, 陈定, 顾华志, 黄奥, 付绿平. 碳源对反应烧结碳化硅性能的影响[J]. 硅酸盐通报, 2024, 43(1): 312-316. |
[14] | 郭政, 穆松, 庄智杰, 张浩, 张蕾. 中/高度真空环境下水泥基材料性能的研究进展[J]. 硅酸盐通报, 2023, 42(9): 3075-3082. |
[15] | 邓永刚, 代婷婷, 孙晨, 杨元全. 沸石微粉对磷酸钾镁水泥水化性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3083-3088. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||