[1] ALFORD N M, PENN S J. Sintered alumina with low dielectric loss[J]. Journal of Applied Physics, 1996, 80(10): 5895-5898. [2] 千粉玲, 谢志鹏, 孙加林, 等. Al2O3陶瓷微波介电性能的研究与进展[J]. 陶瓷学报, 2012, 33(4): 519-527. QIAN F L, XIE Z P, SUN J L, et al. Research status on microwave dielectric properties of Al2O3 ceramics[J]. Journal of Ceramics, 2012, 33(4): 519-527 (in Chinese). [3] ERKALFA H, MISIRLI Z, BAYKARA T. Densification of alumina at 1 250 ℃ with MnO2 and TiO2 additives[J]. Ceramics International, 1995, 21(5): 345-348. [4] YAN M F, RHODES W W. Low temperature sintering of TiO2[J]. Materials Science and Engineering, 1983, 61(1): 59-66. [5] HUANG C L, WANG J J, HUANG C Y. Microwave dielectric properties of sintered alumina using nano-scaled powders of alumina and TiO2[J]. Journal of the American Ceramic Society, 2007, 90(5): 1487-1493. [6] 林聪毅, 孙小曼, 李 蔚. TiO2与SiO2掺杂对Al2O3相转变的研究[J]. 硅酸盐通报, 2021, 40(2): 587-590. LIN C Y, SUN X M, LI W. Investigation on phase transition of Al2O3 doped with TiO2 and SiO2[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(2): 587-590 (in Chinese). [7] ZHANG P, TAO H L, LI W. Low temperature sintering of Al2O3 microwave dielectric ceramics co-doped with 1.5wt% low temperature sintering of Al2O3 microwave dielectric ceramics co-doped with 1.5wt%Nb2O5-0.5wt%ZrO2[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(19): 15773-15778. [8] DONG G Y, LI W. Microwave dielectric properties of Al2O3 ceramics sintered at low temperature[J]. Ceramics International, 2021, 47(14): 19955-19958. [9] KESKI J R, CUTLER I B. Effect of Manganese oxide on sintering of alumina[J]. Journal of the American Ceramic Society, 1965, 48(12): 653-654. [10] LI H Y, XI X A, MA J, et al. Low-temperature sintering of coarse alumina powder compact with sufficient mechanical strength[J]. Ceramics International, 2017, 43(6): 5108-5114. [11] 张 斌, 王焕平, 马红萍, 等. CuO-TiO2复合助剂低温烧结氧化铝陶瓷的机理(Ⅰ)[J]. 材料研究学报, 2009, 23(5): 534-540. ZHANG B, WANG H P, MA H P, et al. Mechanism of lowering the sintering temperature of Al2O3 ceramic by the addition of CuO-TiO2 (Ⅰ)[J]. Chinese Journal of Materials Research, 2009, 23(5): 534-540 (in Chinese). [12] XUE L A, CHEN I W. Low-temperature sintering of alumina with liquid-forming additives[J]. Journal of the American Ceramic Society, 1991, 74(8): 2011-2013. [13] SATHIYAKUMAR M, GNANAM F D. Influence of additives on density, microstructure and mechanical properties of alumina[J]. Journal of Materials Processing Technology, 2003, 133(3): 282-286. [14] FU Y J, SHEN P, HU Z J, et al. The role of CuO-TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting[J]. Journal of Porous Materials, 2016, 23(2): 539-547. [15] DE LA RUBIA M A, REINOSA J J, LERET P, et al. Experimental determination of the eutectic temperature in air of the CuO-TiO2 pseudobinary system[J]. Journal of the European Ceramic Society, 2012, 32(1): 71-76. [16] WANG Z J, CHEN Y. Structures and microwave dielectric properties of Ti-doped CeO2 ceramics with a near-zero temperature coefficient of resonant frequency[J]. Journal of Alloys and Compounds, 2021, 854: 157270. [17] IDDLES D M, BELL A J, MOULSON A J. Relationships between dopants, microstructure and the microwave dielectric properties of ZrO2-TiO2-SnO2 ceramics[J]. Journal of Materials Science, 1992, 27(23): 6303-6310. [18] PENN S J, ALFORD N M, TEMPLETON A, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina[J]. Journal of the American Ceramic Society, 2005, 80(7): 1885-1888. |