硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (10): 3755-3763.
柏林洋1, 蔡照胜2
收稿日期:
2023-05-15
修订日期:
2023-06-12
出版日期:
2023-10-15
发布日期:
2023-10-17
通信作者:
蔡照胜,博士,教授。E-mail: jsyc_czs@163.com
作者简介:
柏林洋(1967—),男,博士,副教授。主要从事光催化材料方面的研究。E-mail:linybai@sohu.com
基金资助:
BAI Linyang1, CAI Zhaosheng2
Received:
2023-05-15
Revised:
2023-06-12
Online:
2023-10-15
Published:
2023-10-17
摘要: 光催化技术在太阳能资源利用方面呈现出良好的应用前景,已受到世界各国的广泛关注。g-C3N4是一种二维结构的非金属聚合物型半导体材料,具有合成简单、成本低、化学性质稳定、无毒等特点,在环境修复和能量转化方面应用潜力较大。但g-C3N4存在对可见光吸收能力差、比表面积小和光生载流子复合速率高等缺点,限制了其实际应用。构筑异质结光催化剂是提高光催化效率的有效途径之一。基于Ag基材料的特点,前人对g-C3N4/Ag基二元复合光催化剂进行了大量研究, 并取得显著成果。本文总结了近年来AgX(X=Cl,Br,I)/g-C3N4、Ag3PO4/g-C3N4、Ag2CO3/g-C3N4、Ag3VO4/g-C3N4、Ag2CrO4/g-C3N4、Ag2O/g-C3N4和Ag2MoO4/g-C3N4复合光催化剂降解环境污染物的研究进展,并评述了g-C3N4/Ag基二元复合光催化剂目前面临的主要挑战,展望了其未来发展趋势。
中图分类号:
柏林洋, 蔡照胜. g-C3N4/Ag基二元复合光催化剂降解环境污染物的研究进展[J]. 硅酸盐通报, 2023, 42(10): 3755-3763.
BAI Linyang, CAI Zhaosheng. Research Progress on g-C3N4/Ag-Based Binary Composite Photocatalysts for Degradation of Environmental Pollutants[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(10): 3755-3763.
[1] LIN Z S, DONG C C, MU W, et al. Degradation of Rhodamine B in the photocatalytic reactor containing TiO2 nanotube arrays coupled with nanobubbles[J]. Advanced Sensor and Energy Materials, 2023, 2(2): 100054. [2] DIAO Z H, JIN J C, ZOU M Y, et al. Simultaneous degradation of amoxicillin and norfloxacin by TiO2@nZVI composites coupling with persulfate: synergistic effect, products and mechanism[J]. Separation and Purification Technology, 2021, 278: 119620. [3] ZHAO S Y, CHEN C X, DING J, et al. One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B[J]. Frontiers of Environmental Science & Engineering, 2021, 16(3): 1-16. [4] JUABRUM S, CHANKHANITTHA T, NANAN S. Hydrothermally grown SDS-capped ZnO photocatalyst for degradation of RR141 azo dye[J]. Materials Letters, 2019, 245: 1-5. [5] SUN Z X, WANG H Q, WU Z B, et al. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction[J]. Catalysis Today, 2018, 300: 160-172. [6] LIN L, SU Z Y, LI Y, et al. Comparative performance and mechanism of bacterial inactivation induced by metal-free modified g-C3N4 under visible light: Escherichia coli versus Staphylococcus aureus[J]. Chemosphere, 2021, 265: 129060. [7] DANG X M, WU S, ZHANG H G, et al. Simultaneous heteroatom doping and microstructure construction by solid thermal melting method for enhancing photoelectrochemical property of g-C3N4 electrodes[J]. Separation and Purification Technology, 2022, 282: 120005. [8] VAN KHIEN N, HUU H T, THI V N N, et al. Facile construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity[J]. Chemosphere, 2022, 289: 133120. [9] LINH P H, DO CHUNG P, VAN KHIEN N, et al. A simple approach for controlling the morphology of g-C3N4 nanosheets with enhanced photocatalytic properties[J]. Diamond and Related Materials, 2021, 111: 108214. [10] XIE M, TANG J C, KONG L S, et al. Cobalt doped g-C3N4 activation of peroxymonosulfate for monochlorophenols degradation[J]. Chemical Engineering Journal, 2019, 360: 1213-1222. [11] ZHEN X L, FAN C Z, TANG L, et al. Advancing charge carriers separation and transformation by nitrogen self-doped hollow nanotubes g-C3N4 for enhancing photocatalytic degradation of organic pollutants[J]. Chemosphere, 2023, 312: 137145. [12] AL-HAJJI L A, ISMAIL A A, FAYCAL A M, et al. Construction of mesoporous g-C3N4/TiO2 nanocrystals with enhanced photonic efficiency[J]. Ceramics International, 2019, 45(1): 1265-1272. [13] CUI P P, HU Y, ZHENG M M, et al. Enhancement of visible-light photocatalytic activities of BiVO4 coupled with g-C3N4 prepared using different precursors[J]. Environmental Science and Pollution Research, 2018, 25(32): 32466-32477. [14] LI X W, CHEN D Y, LI N J, et al. AgBr-loaded hollow porous carbon nitride with ultrahigh activity as visible light photocatalysts for water remediation[J]. Applied Catalysis B: Environmental, 2018, 229: 155-162. [15] SHI H L, HE R, SUN L, et al. Band gap tuning of g-C3N4 via decoration with AgCl to expedite the photocatalytic degradation and mineralization of oxalic acid[J]. Journal of Environmental Sciences, 2019, 84: 1-12. [16] 彭 慧, 刘成琪, 汪楚乔, 等. AgI/g-C3N4复合材料制备及其降解孔雀石绿染料性能[J]. 环境工程, 2019, 37(4): 93-97. PENG H, LIU C Q, WANG C Q, et al. Preparation of AgI/g-C3N4 composites and their degradation performance of malachite green dyes[J]. Environmental Engineering, 2019, 37(4): 93-97 (in Chinese). [17] LIANG W, TANG G, ZHANG H, et al. Core-shell structured AgBr incorporated g-C3N4 nanocomposites with enhanced photocatalytic activity and stability[J]. Materials Technology, 2017, 32(11): 675-685. [18] LI Y B, HU Y R, LIU Z, et al. Construction of self-activating Z-scheme g-C3N4/AgCl heterojunctions for enhanced photocatalytic property[J]. Journal of Physics and Chemistry of Solids, 2023, 172: 111055. [19] XIE J S, WU C Y, XU Z Z, et al. Novel AgCl/g-C3N4 heterostructure nanotube: ultrasonic synthesis, characterization, and photocatalytic activity[J]. Materials Letters, 2019, 234: 179-182. [20] YANG J, ZHANG X, LONG J, et al. Synthesis and photocatalytic mechanism of visible-light-driven AgBr/g-C3N4 composite[J]. Journal of Materials Science: Materials in Electronics, 2021, 32: 6158-6167. [21] HUANG H, LI Y X, WANG H L, et al. In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance for photodegrading rhodamine B solution[J]. Applied Surface Science, 2021, 538: 148132. [22] GUO C S, CHEN M, WU L L, et al. Nanocomposites of Ag3PO4 and phosphorus-doped graphitic carbon nitride for ketamine removal[J]. ACS Applied Nano Materials, 2019, 2(5): 2817-2829. [23] WANG H R, LEI Z, LI L, et al. Holey g-C3N4 nanosheet wrapped Ag3PO4 photocatalyst and its visible-light photocatalytic performance[J]. Solar Energy, 2019, 191: 70-77. [24] 胡俊俊, 丁同悦, 陈奕桦, 等. Ag3PO4/g-C3N4复合材料的制备及其光催化性能[J]. 精细化工, 2021, 38(3): 483-488. HU J J, DING T Y, CHEN Y H, et al. Preparation and photocatalytic application of Ag3PO4/g-C3N4 composites[J]. Fine Chemicals, 2021, 38(3): 483-488 (in Chinese). [25] MEI J, ZHANG D P, LI N, et al. The synthesis of Ag3PO4/g-C3N4 nanocomposites and the application in the photocatalytic degradation of bisphenol A under visible light irradiation[J]. Journal of Alloys and Compounds, 2018, 749: 715-723. [26] 潘良峰, 阎 鑫, 王超莉, 等. 中空管状g-C3N4/Ag3PO4复合催化剂的制备及其可见光催化性能[J]. 无机化学学报, 2022, 38(4): 695-704. PAN L F, YAN X, WANG C L, et al. Preparation and visible light photocatalytic activity of hollow tubular g-C3N4/Ag3PO4 composite catalyst[J]. Chinese Journal of Inorganic Chemistry, 2022, 38(4): 695-704 (in Chinese). [27] DEONIKAR V G, KOTESHWARA R K, CHUNG W J, et al. Facile synthesis of Ag3PO4/g-C3N4 composites in various solvent systems with tuned morphologies and their efficient photocatalytic activity for multi-dye degradation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368: 168-181. [28] DU J G, XU Z, LI H, et al. Ag3PO4/g-C3N4 Z-scheme composites with enhanced visible-light-driven disinfection and organic pollutants degradation: uncovering the mechanism[J]. Applied Surface Science, 2021, 541: 148487. [29] NAGAJYOTHI P C, SREEKANTH T V M, RAMARAGHAVULU R, et al. Photocatalytic dye degradation and hydrogen production activity of Ag3PO4/g-C3N4 nanocatalyst[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(16): 14890-14901. [30] AN D S, ZENG H Y, XIAO G F, et al. Cr(VI) reduction over Ag3PO4/g-C3N4 composite with p-n heterostructure under visible-light irradiation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 117: 133-143. [31] YAN X, WANG Y Y, KANG B B, et al. Preparation and characterization of tubelike g-C3N4/Ag3PO4 heterojunction with enhanced visible-light photocatalytic activity[J]. Crystals, 2021, 11(11): 1373. [32] 高闯闯, 刘海成, 孟无霜, 等. Ag3PO4/g-C3N4复合光催化剂的制备及其可见光催化性能[J]. 环境科学, 2021, 42(5): 2343-2352. GAO C C, LIU H C, MENG W S, et al. Preparation of Ag3PO4/g-C3N4 composite photocatalysts and their visible light photocatalytic performance[J]. Environmental Science, 2021, 42(5): 2343-2352 (in Chinese). [33] CHENG R, WEN J Y, XIA J C, et al. Photo-catalytic oxidation of gaseous toluene by Z-scheme Ag3PO4-g-C3N4 composites under visible light: removal performance and mechanisms[J]. Catalysis Today, 2022, 388/389: 26-35. [34] ZHANG W, ZHOU L, SHI J, et al. Synthesis of Ag3PO4/g-C3N4 composite with enhanced photocatalytic performance for the photodegradation of diclofenac under visible light irradiation[J]. Catalysts, 2018, 8(2): 45. [35] ZHANG M X, DU H X, JI J, et al. Highly efficient Ag3PO4/g-C3N4 Z-scheme photocatalyst for its enhanced photocatalytic performance in degradation of rhodamine B and phenol[J]. Molecules, 2021, 26(7): 2062. [36] LI K, CHEN M M, CHEN L, et al. In-situ hydrothermal synthesis of Ag3PO4/g-C3N4 nanocomposites and their photocatalytic decomposition of sulfapyridine under visible light[J]. Processes, 2023, 11(2): 375. [37] 汲 畅, 王国胜. Ag3PO4/g-C3N4异质结催化剂可见光降解黄连素[J]. 无机盐工业, 2022, 54(4): 175-180. JI C, WANG G S. Degradation of berberine by visible light over Ag3PO4/g-C3N4 heterojunction catalyst[J]. Inorganic Chemicals Industry, 2022, 54(4): 175-180 (in Chinese). [38] CHEN R H, DING S Y, FU N, et al. Preparation of a g-C3N4/Ag3PO4 composite Z-type photocatalyst and photocatalytic degradation of Ofloxacin: degradation performance, reaction mechanism, degradation pathway and toxicity evaluation[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109440. [39] HAYATI M, ABDUL H A, ZUL A M H, et al. In-depth investigation on the photostability and charge separation mechanism of Ag3PO4/g-C3N4 photocatalyst towards very low visible light intensity[J]. Journal of Molecular Liquids, 2023, 376: 121494. [40] DING M, ZHOU J J, YANG H C, et al. Synthesis of Z-scheme g-C3N4 nanosheets/Ag3PO4 photocatalysts with enhanced visible-light photocatalytic performance for the degradation of tetracycline and dye[J]. Chinese Chemical Letters, 2020, 31(1): 71-76. [41] PAN S G, JIA B Q, FU Y S. Ag2CO3 nanoparticles decorated g-C3N4 as a high-efficiency catalyst for photocatalytic degradation of organic contaminants[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(11): 14464-14476. [42] PIRZADA B M, PUSHPENDRA, KUNCHALA R K, et al. Synthesis of LaFeO3/Ag2CO3 nanocomposites for photocatalytic degradation of rhodamine B and p-chlorophenol under natural sunlight[J]. ACS Omega, 2019, 4(2): 2618-2629. [43] SHEN J T, QIAN L, HUANG J L, et al. Enhanced degradation toward Levofloxacin under visible light with S-scheme heterojunction In2O3/Ag2CO3: internal electric field, DFT calculation and degradation mechanism[J]. Separation and Purification Technology, 2021, 275: 119239. [44] LIU Y, KONG J J, YUAN J L, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation[J]. Chemical Engineering Journal, 2018, 331: 242-254. [45] AN W J, SUN K L, HU J S, et al. The Z-scheme Ag2CO3@g-C3N4 core-shell structure for increased photoinduced charge separation and stable photocatalytic degradation[J]. Applied Surface Science, 2020, 504: 144345. [46] YIN H F, LIU J, SHI H L, et al. Highly efficient catalytic ozonation for oxalic acid mineralization with Ag2CO3 modified g-C3N4: performance and mechanism[J]. Process Safety and Environmental Protection, 2022, 162: 944-954. [47] XIU Z W, ZHANG D F, WANG J X. Direct Z-scheme photocatalytic system: Ag2CO3/g-C3N4 organic-inorganic hybrid with superior activity through built-in electric field transfer mechanism[J]. Russian Journal of Physical Chemistry A, 2021, 95(6): 1255-1268. [48] HIND A, AL-HAJJI L A, MAHMOUD M H H, et al. Visible-light-driven S-scheme mesoporous Ag3VO4/C3N4 heterojunction with promoted photocatalytic performances[J]. Separation and Purification Technology, 2021, 272: 118914. [49] 蒋善庆, 曹 宇, 马佳慧, 等. Ag3VO4/g-C3N4复合材料可见光催化降解MC-LR的性能[J]. 常州大学学报(自然科学版), 2020, 32(5): 8-16+26. JIANG S Q, CAO Y, MA J H, et al. Performance of MC-LR photocatalytic degradation over Ag3VO4/g-C3N4composite under visible light irradiation[J]. Journal of Changzhou University (Natural Science Edition), 2020, 32(5): 8-16+26 (in Chinese). [50] ABDOLLAHI B, FARSHNAMA S, ABBASI A E, et al. Cu(BDC) metal-organic framework (MOF)-based Ag2CrO4 heterostructure with enhanced solar-light degradation of organic dyes[J]. Inorganic Chemistry Communications, 2022, 138: 109236. [51] SHANG Y Y, CHEN X, LIU W W, et al. Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion-assisted co-precipitation method[J]. Applied Catalysis B: Environmental, 2017, 204: 78-88. [52] NAJAFIDOUST A, ABDOLLAHI B, SARANI M, et al. MIL-(53)Fe metal-organic framework (MOF)-based Ag2CrO4 hetrostructure with enhanced solar-light degradation of organic dyes[J]. Optical Materials, 2022, 125: 112108. [53] REN X Z, ZHANG X S, GUO R C, et al. Hollow mesoporous g-C3N4/Ag2CrO4 photocatalysis with direct Z-scheme: excellent degradation performance for antibiotics and dyes[J]. Separation and Purification Technology, 2021, 270: 118797. [54] RAJALAKSHMI N, BARATHI D, MEYVEL S, et al. S-scheme Ag2CrO4/g-C3N4 photocatalyst for effective degradation of organic pollutants under visible light[J]. Inorganic Chemistry Communications, 2021, 132: 108849. [55] YANG Z M, DENG C H, DING Y H, et al. Eco-friendly and effective strategy to synthesize ZnO/Ag2O heterostructures and its excellent photocatalytic property under visible light[J]. Journal of Solid State Chemistry, 2018, 268: 83-93. [56] LIANG S H, ZHANG D F, PU X P, et al. A novel Ag2O/g-C3N4 p-n heterojunction photocatalysts with enhanced visible and near-infrared light activity[J]. Separation and Purification Technology, 2019, 210: 786-797. [57] JIANG Z, LE S K, XIE Y J, et al. Mpg-C3N4/Ag2O nanocomposites photocatalysts with enhanced visible-light photocatalytic performance[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(2): 721-728. [58] KADI M W, MOHAMED R M, BAHNEMANN D W. Controlled synthesis of Ag2O/g-C3N4 heterostructures using soft and hard templates for efficient and enhanced visible-light degradation of ciprofloxacin[J]. Ceramics International, 2021, 47(22): 31073-31083. [59] FRAGA F C, D G ROCCA, JOSÉ H J, et al. Evaluation of reactive oxygen species and photocatalytic degradation of ethylene using β-Ag2MoO4/g-C3N4 composites[J]. Journal of Photochemistry & Photobiology, A: Chemistry, 2022, 432: 114102. [60] PANDIRI M, VELCHURI R, GUNDEBOINA R, et al. A facile in-situ hydrothermal route to construct a well-aligned β-Ag2MoO4/g-C3N4 heterojunction with enhanced visible light photodegradation: mechanistic views[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360: 231-241. [61] WU M, LV H Y, WANG T, et al. Ag2MoO4 nanoparticles encapsulated in g-C3N4 for sunlight photodegradation of pollutants[J]. Catalysis Today, 2018, 315: 205-212. [62] LIU L, QI Y H, LU J R, et al. A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation[J]. Applied Catalysis B: Environmental, 2016, 183: 133-141. [63] JABBAR Z H, OKAB A A, GRAIMED B H, et al. Photocatalytic destruction of Congo red dye in wastewater using a novel Ag2WO4/Bi2S3 nanocomposite decorated g-C3N4 nanosheet as ternary S-scheme heterojunction: improving the charge transfer efficiency[J]. Diamond and Related Materials, 2023, 133: 109711. [64] LI Z L, JIN C Y, WANG M, et al. Novel rugby-like g-C3N4/BiVO4 core/shell Z-scheme composites prepared via low-temperature hydrothermal method for enhanced photocatalytic performance[J]. Separation and Purification Technology, 2020, 232: 115937. |
[1] | 陈璞, 欧晓霞, 赵可, 杨晓宇. In2S3/g-C3N4复合光催化剂的制备及其光催化降解四环素[J]. 硅酸盐通报, 2023, 42(1): 310-318. |
[2] | 徐泽忠, 邹慧, 曹显志, 吴阳, 韩成良. SiO2/g-C3N4复合粉体制备及其光催化性能[J]. 硅酸盐通报, 2021, 40(8): 2748-2754. |
[3] | 刘帅, 谢银德, 闫硕, 侯保森, 刘瑞杰. 复合催化剂ZnFe2O4/FeVO4的制备及光催化性能[J]. 硅酸盐通报, 2021, 40(5): 1707-1713. |
[4] | 崔磊;王红侠;李新星;汤亮;张娜娜. 蠕虫状TiO2的制备及光催化性能研究[J]. 硅酸盐通报, 2018, 37(11): 3637-3640. |
[5] | 胡文全;袁晓光;王岩;冯毅毅. SnO2纳米花的水热合成及其光催化性能研究[J]. 硅酸盐通报, 2017, 36(11): 3759-3765. |
[6] | 王睿飞;赵洪力;樊庆;郭有文;储小鹏. 采用Sol-gel法制备SiO2/TiO2光催化双层薄膜[J]. 硅酸盐通报, 2016, 35(2): 638-645. |
[7] | 陈霞;陆改玲;周澐;计晶晶. PEG对二氧化钛薄膜微观结构和光催化性能的影响[J]. 硅酸盐通报, 2016, 35(1): 302-305. |
[8] | 耿涛;张莉;王红艳;张克营;周侠. ZnO/AgBr复合纳米棒的制备及其光催化性能研究[J]. 硅酸盐通报, 2015, 34(8): 2130-2133. |
[9] | 万鑫;唐潮;房明浩;闵鑫;黄朝晖;刘艳改;吴小文. TiO2/电气石复合纤维的光催化性能研究[J]. 硅酸盐通报, 2014, 33(8): 1880-1884. |
[10] | 叶凤英;沈勇;王黎明;张惠芳. 锐钛矿型纳米TiO2低温制备及光催化性能研究[J]. 硅酸盐通报, 2014, 33(2): 277-283. |
[11] | 郭春芳;张淑芬. 溶胶-凝胶法制备ZnO纳米微球及光催化性能研究[J]. 硅酸盐通报, 2013, 32(8): 1502-1505. |
[12] | 王丹军;郭莉;李东升;付峰;张理平;高利峰. 铁铈共掺TiO_2/复合白土光催化剂的合成及工业废水处理活性[J]. 硅酸盐通报, 2010, 29(1): 58-65. |
[13] | 章少华;王建军;胡江峰;谢冰. 钕氟复合掺杂二氧化钛纳米线阵列的光催化性能[J]. 硅酸盐通报, 2009, 28(5): 926-929. |
[14] | 于向阳;梁文;程继健. 提高二氧化钛光催化性能的途径[J]. 硅酸盐通报, 2000, 19(1): 53-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||