[1] 刘冲昊, 岳雪涛, 矫川本, 等. 赤泥基胶凝材料的制备与性能研究[J]. 硅酸盐通报, 2020, 39(11): 3574-3581. LIU C H, YUE X T, JIAO C B, et al. Study on preparation and properties of red mud-based cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3574-3581 (in Chinese). [2] 张 默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985. ZHANG M, WANG S Y. Experimental investigation and microstructural analysis of ambient temperature cured red mud-class F fly ash based geopolymer[J]. Materials Reports, 2019, 33(6): 980-985 (in Chinese). [3] 史 迪, 叶家元, 张 鹏, 等. 蒸汽养护对赤泥基碱激发胶凝材料性能及微观结构的影响[J]. 混凝土, 2017(10): 87-89+92. SHI D, YE J Y, ZHANG P, et al. Effect of steam curing on properties and microstructure of red mud-based alkali-activated cementitious materials[J]. Concrete, 2017(10): 87-89+92 (in Chinese). [4] 夏瑞杰, 朱建平, 刘少雄, 等. 赤泥和脱硫石膏制备高贝利特硫铝酸盐水泥熟料[J]. 有色金属工程, 2017, 7(6): 58-63+79. XIA R J, ZHU J P, LIU S X, et al. Preparation of high belite sulphoaluminate cement clinkers using red mud and desulfurization gypsum[J]. Nonferrous Metals Engineering, 2017, 7(6): 58-63+79 (in Chinese). [5] 王玉麟, 漆贵海, 许国伟. 拜耳法赤泥对砌筑砂浆性能影响试验研究[J]. 混凝土, 2011(9): 110-112. WANG Y L, QI G H, XU G W. Rearch on performanc of masonry mortar with Bayer red-mud[J]. Concrete, 2011(9): 110-112 (in Chinese). [6] 张 鹏, 张文生, 韦江雄, 等. 养护温度对赤泥-矿渣碱激发胶凝材料强度和水化产物的影响[J]. 新型建筑材料, 2017, 44(10): 1-3+11. ZHANG P, ZHANG W S, WEI J X, et al. Influence of curing conditions on the strength, hydration properties of geopolymer synthesized from red mud and slag[J]. New Building Materials, 2017, 44(10): 1-3+11 (in Chinese). [7] 罗忠涛, 康少杰, 张美香, 等. 碱激发赤泥-矿渣地质聚合物制备及力学性能研究[J]. 武汉理工大学学报, 2019, 41(3): 47-51. LUO Z T, KANG S J, ZHANG M X, et al. Preparation and mechanical properties of alkali-activated red mud-slag geopolymer[J]. Journal of Wuhan University of Technology, 2019, 41(3): 47-51 (in Chinese). [8] 刘 英, 倪 文, 黄晓燕, 等. 拜耳法低铁赤泥在电石渣-脱硫石膏体系中的水化硬化特性[J]. 材料导报, 2016, 30(14): 120-124. LIU Y, NI W, HUANG X Y, et al. Characteristics of hydration and hardening of red mud of Bayer process in carbide slag-flue gas desulfurization gypsum system[J]. Materials Review, 2016, 30(14): 120-124 (in Chinese). [9] 宋丽娜. 陈化拜耳法赤泥基地聚合材料的制备与水化机理研究[D]. 青岛: 青岛理工大学, 2019. SONG L N. Study on preparation and hydration mechanism of polymeric materials in red mud base of aging Bayer process[D]. Qingdao: Qingdao Tehcnology University, 2019 (in Chinese). [10] 彭玉清, 郭荣鑫, 林志伟, 等. 粉煤灰地聚合物力学性能影响因素研究综述[J]. 硅酸盐通报, 2021, 40(3): 858-866. PENG Y Q, GUO R X, LIN Z W, et al. Review on influencing factors of mechanical properties of fly ash geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 858-866 (in Chinese). [11] 赵献辉, 王浩宇, 周博宇, 等. 粉煤灰基地聚物的性能影响因素及其凝胶产物研究进展[J]. 硅酸盐通报, 2021, 40(3): 867-876. ZHAO X H, WANG H Y, ZHOU B Y, et al. Research development on influencing factors of performances and gel products in fly ash-based geopolymer material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 867-876 (in Chinese). [12] 荆 锐, 刘 宇, 张慧杰, 等. 偏高岭土和粉煤灰对碱-矿渣复合胶凝材料的凝结时间及早期力学性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3237-3243. JING R, LIU Y, ZHANG H J, et al. Influences of metakaolin and fly ash on setting time and early age mechanical properties of alkali-activated slag composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3237-3243 (in Chinese). [13] 刘 泽, 周 瑜, 孔凡龙, 等. 碱激发矿渣基地质聚合物微观结构与性能研究[J]. 硅酸盐通报, 2017, 36(6): 1830-1834. LIU Z, ZHOU Y, KONG F L, et al. Microstructure and properties of alkali-activated blast furnace slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6): 1830-1834 (in Chinese). [14] LI G Y, TAN H B, ZHANG J J, et al. Ground granulated blast-furnace slag/fly ash blends activated by sodium carbonate at ambient temperature[J]. Construction and Building Materials, 2021, 291: 123378. [15] JIN Y X, LIU Z, HAN L, et al. Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions[J]. Journal of Hazardous Materials, 2022, 423: 127027. [16] DAVIDOVITS J. Geopolymers[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. [17] PALOMO A, GRUTZECK M W, BLANCO M T. Alkali-activated fly ashes[J]. Cement and Concrete Research, 1999, 29(8): 1323-1329. [18] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement and Concrete Research, 2005, 35(6): 1204-1209. [19] NOVAIS R M, PULLAR R C, LABRINCHA J A. Geopolymer foams: an overview of recent advancements[J]. Progress in Materials Science, 2020, 109: 100621. [20] LIANG G W, LIU T J, LI H X, et al. A novel synthesis of lightweight and high-strength green geopolymer foamed material by rice husk ash and ground-granulated blast-furnace slag[J]. Resources, Conservation and Recycling, 2022, 176: 105922. [21] SHEN S W, TIAN J, ZHU Y C, et al. Synthesis of industrial solid wastes based geopolymer foams for building energy conservation: effects of metallic aluminium and reclaimed materials[J]. Construction and Building Materials, 2022, 328: 127083. [22] HAN L, WANG J X, LIU Z, et al. Synthesis of fly ash-based self-supported zeolites foam geopolymer via saturated steam treatment[J]. Journal of Hazardous Materials, 2020, 393: 122468. [23] CHINDAPRASIRT P, JITSANGIAM P, RATTANASAK U. Hydrophobicity and efflorescence of lightweight fly ash geopolymer incorporated with calcium stearate[J]. Journal of Cleaner Production, 2022, 364: 132449. [24] LIU Z, SHAO N N, WANG D M, et al. Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash[J]. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(1): 89-94. [25] MUDGAL M, SINGH A, CHOUHAN R K, et al. Fly ash red mud geopolymer with improved mechanical strength[J]. Cleaner Engineering and Technology, 2021, 4: 100215. [26] 侯双明, 高 嵩, 张 蕾, 等. 热活化和机械活化对拜耳法赤泥性能影响[J]. 硅酸盐通报, 2020, 39(5): 1573-1577. HOU S M, GAO S, ZHANG L, et al. Effects of thermal and mechanical activation on properties of Bayer red mud[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1573-1577 (in Chinese). [27] YE N, YANG J K, LIANG S, et al. Synthesis and strength optimization of one-part geopolymer based on red mud[J]. Construction and Building Materials, 2016, 111: 317-325. [28] SHAO Z Y, WANG J Q, JIANG Y H, et al. The performance of micropore-foamed geopolymers produced from industrial wastes[J]. Construction and Building Materials, 2021, 304: 124636. [29] 刘 泽, 彭中昊, 张延博, 等. 一种防火保温材料及其制备方法: CN115093244B[P]. 2023-02-24. LIU Z, PENG Z H, ZHANG Y B, et al. A fireproof heat preservation material and a preparation method thereof: CN115093244B[P]. 2023-02-24 (in Chinese). [30] CRIADO M, FERNÁNDEZ-JIMÉNEZ A, DE LA TORRE A G, et al. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash[J]. Cement and Concrete Research, 2007, 37(5): 671-679. [31] PALOMO A, BLANCO-VARELA M T, GRANIZO M L, et al. Chemical stability of cementitious materials based on metakaolin[J]. Cement and Concrete Research, 1999, 29(7): 997-1004. [32] HUANG Y, HAN M F. The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products[J]. Journal of Hazardous Materials, 2011, 193: 90-94. [33] LI N, FARZADNIA N, SHI C J. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation[J]. Cement and Concrete Research, 2017, 100: 214-226. [34] SWANEPOEL J C, STRYDOM C A. Utilisation of fly ash in a geopolymeric material[J]. Applied Geochemistry, 2002, 17(8): 1143-1148. [35] LEE W K W, VAN DEVENTER J S J. The effects of inorganic salt contamination on the strength and durability of geopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 211(2/3): 115-126. [36] GARCIA-LODEIRO I, PALOMO A, FERNÁNDEZ-JIMÉNEZ A, et al. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O[J]. Cement and Concrete Research, 2011, 41(9): 923-931. [37] CORNELL R M, SCHWERTMANN U, CORNELL R, et al. The iron oxides: structure, properties, reactions, occurrences and uses[J]. Mineralogical Magazine, 2003, 34(408): 740-741. [38] KHAN M I, AZIZLI K, SUFIAN S, et al. Sodium silicate-free geopolymers as coating materials: effects of Na/Al and water/solid ratios on adhesion strength[J]. Ceramics International, 2015, 41(2): 2794-2805. [39] GAO K, LIN K L, WANG D Y, et al. Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers[J]. Construction and Building Materials, 2014, 53: 503-510. [40] RUIZ-SANTAQUITERIA C, SKIBSTED J, FERNÁNDEZ-JIMÉNEZ A, et al. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates[J]. Cement and Concrete Research, 2012, 42(9): 1242-1251. [41] JAFARI NADOUSHAN M, RAMEZANIANPOUR A A. The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers[J]. Construction and Building Materials, 2016, 111: 337-347. [42] MORSY M S, ALSAYED S H, AL-SALLOUM Y, et al. Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder[J]. Arabian Journal for Science and Engineering, 2014, 39(6): 4333-4339. |