[1] 刘新杰, 王 昊, 刘丽丽. 粉煤灰资源开发利用及产业发展[J]. 无机盐工业, 2018, 50(5): 12-14. LIU X J, WANG H, LIU L L. Development and utilization of fly ash resources[J]. Inorganic Chemicals Industry, 2018, 50(5): 12-14 (in Chinese). [2] ZHAO J H, TONG L Y, LI B E, et al. Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment[J]. Journal of Cleaner Production, 2021, 307: 127085. [3] SINGH N B, MIDDENDORF B. Geopolymers as an alternative to Portland cement: an overview[J]. Construction and Building Materials, 2020, 237: 117455. [4] 王志浩. 三聚氰胺系减水剂和萘系减水剂对碱激发粉煤灰胶凝材料工作性能的影响研究[D]. 西安: 西安建筑科技大学, 2021. WANG Z H. Effect of melamine-based superplasticizer and naphthalene-based superplasticizer on the workability of alkali-activated fly ash cementitious materials[D]. Xi'an: Xi'an University of Architecture and Technology, 2021 (in Chinese). [5] XIE J T, KAYALI O. Effect of superplasticiser on workability enhancement of Class F and Class C fly ash-based geopolymers[J]. Construction and Building Materials, 2016, 122: 36-42. [6] XIONG G Y, GUO X L. Effects and mechanism of superplasticizers and precursor proportions on the fresh properties of fly ash-slag powder based geopolymers[J]. Construction and Building Materials, 2022, 350: 128734. [7] ALREFAEI Y, WANG Y S, DAI J G. The effectiveness of different superplasticizers in ambient cured one-part alkali activated pastes[J]. Cement and Concrete Composites, 2019, 97: 166-174. [8] LI S C, ZHANG J, LI Z F, et al. Feasibility study of red mud-blast furnace slag based geopolymeric grouting material: effect of superplasticizers[J]. Construction and Building Materials, 2021, 267: 120910. [9] NEMATOLLAHI B, SANJAYAN J. Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer[J]. Materials & Design, 2014, 57: 667-672. [10] RAKNGAN W, WILLIAMSON T, FERRON R D, et al. Controlling workability in alkali-activated Class C fly ash[J]. Construction and Building Materials, 2018, 183: 226-233. [11] 潘祖德, 刘 琦, 曹 阳, 等. 磷石膏基矿井充填材料制备及其性能研究[J]. 无机盐工业, 2022, 54(11): 90-95. PAN Z D, LIU Q, CAO Y, et al. Study on preparation and properties of phosphogypsum based mine filling materials[J]. Inorganic Chemicals Industry, 2022, 54(11): 90-95 (in Chinese). [12] KUMAR A, SARAVANAN T J, BISHT K, et al. A review on the utilization of red mud for the production of geopolymer and alkali activated concrete[J]. Construction and Building Materials, 2021, 302: 124170. [13] WANG M F, LIU X M. Applications of red mud as an environmental remediation material: a review[J]. Journal of Hazardous Materials, 2021, 408: 124420. [14] 杜建磊, 杜根杰, 高建勇, 等. 我国大宗工业固废综合利用产业发展问题及建议[J]. 现代矿业, 2023, 39(2): 23-26. DU J L, DU G J, GAO J Y, et al. Development issues and suggestions on comprehensive utilization of bulk industrial solid waste in China[J]. Modern Mining, 2023, 39(2): 23-26 (in Chinese). [15] 薛生国, 朱铭星, 杨兴旺, 等. 赤泥激发胶凝材料及路用研究进展[J/OL]. 中国有色金属学报: 1-32 [2023-06-09]. http://kns.cnki.net/kcms/detail/43.1238.TG.20221129.1527.002.html. XUE S G, ZHU M X, YANG X W, et al. Property of bauxite residue-activated cementitious materials and its engineering road application: a comprehensive[J]. The Chinese Journal of Nonferrous Metals: 1-32 [2023-06-09]. http://kns.cnki.net/kcms/detail/43.1238.TG.20221129.1527.002.html (in Chinese). [16] LYU F, HU Y H, WANG L, et al. Dealkalization processes of bauxite residue: a comprehensive review[J]. Journal of Hazardous Materials, 2021, 403: 123671. [17] 王小萍. 木质素磺酸盐对硅酸盐水泥凝结时间的影响及其作用机理研究[D]. 广州: 华南理工大学, 2012. WANG X P. Effect of lignosulfonate on setting time of Portland cement and study on its action mechanism[D]. Guangzhou: South China University of Technology, 2012 (in Chinese). [18] 袁红晓. 矿渣表面处理对碱矿渣浆体塑化性能影响研究[D]. 重庆: 重庆大学, 2021. YUAN H X. Study on the influence of slag surface treatment on plasticizing properties of alkali slag slurry[D].Chongqing: Chongqing University, 2021 (in Chinese). [19] 黄继志. 水泥基矿物分散体系的微观作用力及流变性研究[D]. 广州: 华南理工大学, 2021. HUANG J Z. Micro-forces and rheological property of cement-based mineral dispersion systems[D]. Guangzhou: South China University of Technology, 2021 (in Chinese). [20] ZHANG C, YANG J S, OU X F, et al. Clay dosage and water/cement ratio of clay-cement grout for optimal engineering performance[J]. Applied Clay Science, 2018, 163: 312-318. [21] 周海峰, 杨东杰, 伍晓蕾, 等. 漆酶改性木质素磺酸钠的结构表征及吸附特征[J]. 高等学校化学学报, 2013, 34(1): 218-224. ZHOU H F, YANG D J, WU X L, et al. Structure and adsorption characterization of sodium lignosulfonate by laccase modification[J]. Chemical Journal of Chinese Universities, 2013, 34(1): 218-224 (in Chinese). [22] CARABBA L, MANZI S, BIGNOZZI M. Superplasticizer addition to carbon fly ash geopolymers activated at room temperature[J]. Materials, 2016, 9(7): 586. [23] JANOWSKA-RENKAS E. The effect of superplasticizers' chemical structure on their efficiency in cement pastes[J]. Construction and Building Materials, 2013, 38: 1204-1210. [24] PALACIOS M, PUERTAS F. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars[J]. Cement and Concrete Research, 2005, 35(7): 1358-1367. [25] JANG J G, LEE N K, LEE H K. Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers[J]. Construction and Building Materials, 2014, 50: 169-176. [26] 刘德春, 卢忠远, 崔绍波, 等. 新型高效萘系减水剂的合成及性能研究[J]. 硅酸盐通报, 2006, 25(5): 137-142. LIU D C, LU Z Y, CUI S B, et al. Study on properties of A new type naphthaline high efficiency water reducing agent synthesized[J]. Bulletin of the Chinese Ceramic Society, 2006, 25(5): 137-142 (in Chinese). [27] 胡红梅, 马保国, 何 柳. 萘系高效减水剂的优化合成与改性[J]. 武汉理工大学学报, 2005, 27(9): 38-41. HU H M, MA B G, HE L. Optimum synthesis and modification of naphthalene series super plasticizers[J]. Journal of Wuhan University of Technology, 2005, 27(9): 38-41 (in Chinese). [28] 欧阳高尚, 王劲松, 董 腾, 等. 三聚氰胺减水剂对碱激发超细偏高岭土基地质聚合物流动性和力学性能的影响[J]. 硅酸盐通报, 2020, 39(6): 1828-1834. OUYANG G S, WANG J S, DONG T, et al. Effect of melamine water reducer on fluidity and mechanical properties of alkali-activated ultrafine metakaolin based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1828-1834 (in Chinese). [29] LI H, WANG Z H, ZHANG Y W, et al. Composite application of naphthalene and melamine-based superplasticizers in alkali activated fly ash (AAFA)[J]. Construction and Building Materials, 2021, 297: 123651. [30] BAI B, BAI F, NIE Q K, et al. A high-strength red mud-fly ash geopolymer and the implications of curing temperature[J]. Powder Technology, 2023, 416: 118242. [31] HU W, NIE Q K, HUANG B S, et al. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes[J]. Journal of Cleaner Production, 2018, 186: 799-806. [32] LIU J P, LI X Y, LU Y S, et al. Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer[J]. Construction and Building Materials, 2020, 263: 120653. [33] LEMOUGNA P N, WANG K T, TANG Q, et al. Study on the development of inorganic polymers from red mud and slag system: application in mortar and lightweight materials[J]. Construction and Building Materials, 2017, 156: 486-495. [34] YANG J, XU L H, WU H Q, et al. Microstructure and mechanical properties of metakaolin-based geopolymer composites containing high volume of spodumene tailings[J]. Applied Clay Science, 2022, 218: 106412. [35] ZHAO X H, LIU C Y, ZUO L M, et al. Investigation into the effect of calcium on the existence form of geopolymerized gel product of fly ash based geopolymers[J]. Cement and Concrete Composites, 2019, 103: 279-292. [36] LIU J, HU L, TANG L P, et al. Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material[J]. Journal of Hazardous Materials, 2021, 402: 123451. [37] ZHANG W, LIU X M, WANG Y G, et al. Binary reaction behaviors of red mud based cementitious material: hydration characteristics and Na+ utilization[J]. Journal of Hazardous Materials, 2021, 410: 124592. [38] CHEN K L, LIN W T, LIU Q, et al. Micro-characterizations and geopolymerization mechanism of ternary cementless composite with reactive ultra-fine fly ash, red mud and recycled powder[J]. Construction and Building Materials, 2022, 343: 128091. |