[1] 张心明, 田 爽, 付为杰, 等. 光学玻璃离心熔铸过程中成型热历史对反射镜的影响[J]. 光学 精密工程, 2018, 26(10): 2475-2483. ZHANG X M, TIAN S, FU W J, et al. Effects of thermal history on reflector formation in an optical glass centrifugal casting process[J]. Optics and Precision Engineering, 2018, 26(10): 2475-2483 (in Chinese). [2] 汤李缨, 程金树, 袁 坚. 热历史对CaO(MgO)-Al2O3-SiO2系统晶化性能和硬度的影响[J]. 武汉工业大学学报, 1998, 20(1): 34-36. TANG L Y, CHENG J S, YUAN J. Effect of thermal history on the crystallization behaviour and hardness of a glass-ceramic in the CaO(MgO)-Al2O3-SiO2 system[J]. Journal of Wuhan University of Technology, 1998, 20(1): 34-36 (in Chinese). [3] 王自明. 热历史对有机玻璃残余应力分布的影响[J]. 航空材料, 1987, 7(6): 5-9. WANG Z M. Effect of thermal history on residual stress distribution of plexiglass[J]. Journal of Aeronautical Materials, 1987, 7(6): 5-9 (in Chinese). [4] 赵凤阳, 曹 欣, 王萍萍, 等. 无碱硼铝硅酸盐玻璃组分对其应变点、退火点、软化点温度影响的正交实验研究[J]. 材料导报, 2022, 36(增刊2): 94-97. ZHAO F Y, CAO X, WANG P P, et al. Orthogonal experimental study on the influence of alkali-free boroaluminosilicate glass composition on its strain point, annealing point and softening point temperature[J]. Materials Reports, 2022, 36(supplement 2): 94-97 (in Chinese). [5] 刘景涛. 热历史对非晶合金的玻璃形成能力和性能的影响[D]. 泰安: 山东农业大学, 2015. LIU J T. Effect of thermal history on glass-forming ability and properties of amorphous alloys[D]. Taian: Shandong Agricultural University, 2015 (in Chinese). [6] MACRELLI G, VARSHNEYA A K, MAURO J C. Ultra-thin glass as a substrate for flexible photonics[J]. Optical Materials, 2020, 106: 109994. [7] 王明忠, 梁新辉, 宋占财, 等. 锂铝硅酸盐玻璃的化学强化工艺参数研究[J]. 玻璃搪瓷与眼镜, 2021, 49(2): 18-22. WANG M Z, LIANG X H, SONG Z C, et al. Study on chemical strengthening process parameters of lithium aluminosilicate glass[J]. Glass Enamel & Ophthalmic Optics, 2021, 49(2): 18-22 (in Chinese). [8] GUO X J, PIVOVAROV A L, SMEDSKJAER M M, et al. Non-conservation of the total alkali concentration in ion-exchanged glass[J]. Journal of Non-Crystalline Solids, 2014, 387: 71-75. [9] 胡 伟, 覃文城, 谈宝权, 等. 二强处理的盖板玻璃抗跌落性内在影响因素研究[J]. 玻璃搪瓷与眼镜, 2021, 49(2): 1-7+33. HU W, QIN W C, TAN B Q, et al. Study on the internal influencing factors of falling resistance of cover glass treated with two strong chemicals[J]. Glass Enamel & Ophthalmic Optics, 2021, 49(2): 1-7+33 (in Chinese). [10] 刘亚茹, 李俊杰, 丁佐鑫, 等. 触控屏用盖板玻璃的硬度分析[J]. 玻璃搪瓷与眼镜, 2021, 49(12): 7-13. LIU Y R, LI J J, DING Z X, et al. Analysis of hardness of cover glass for touch screen[J]. Glass Enamel & Ophthalmic Optics, 2021, 49(12): 7-13 (in Chinese). [11] WANG Z, SUO T, MANES A. Effect of chemical strengthening residual stress on the flexural performance and fracture behavior of aluminosilicate glass[J]. Engineering Fracture Mechanics, 2021, 258: 108104. [12] 倪明堂, 卢 亚, 于海深, 等. 3D超薄曲面玻璃热弯工艺优化及分析[J]. 机电工程技术, 2021, 50(3): 97-100+177. NI M T, LU Y, YU H S, et al. Performance analysis of hot bending process for ultra-thin glass of mobile phone[J]. Mechanical & Electrical Engineering Technology, 2021, 50(3): 97-100+177 (in Chinese). [13] KUANG R, YANG P, LIU R, et al. Analysis of the variation in surface roughness of a glass sheet after hot bending[J]. Glass Technology European Journal of Glass Science and Technology Part A, 2015, 56(6): 214-220. [14] 田昊东, 王大明, 徐 驰, 等. 化学强化提升薄型锂铝硅玻璃抗冲击性能研究[J]. 玻璃搪瓷与眼镜, 2023, 51(2): 1-6. TIAN H D, WANG D M, XU C, et al. Study on mechanics performance optimization of chemical strengthening thin lithium aluminum silicate glass[J]. Glass Enamel & Ophthalmic Optics, 2023, 51(2): 1-6 (in Chinese). [15] 胡传杰, 张喆颖, 刘 超, 等. 热处理与二次化学强化对玻璃应力层深度的影响[J]. 硅酸盐通报, 2019, 38(3): 783-787. HU C J, ZHANG Z Y, LIU C, et al. Effect of heat-treatment and second chemical strengthening on the depth of layer of glass[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 783-787 (in Chinese). [16] 穆洪杨. 二次离子交换增强超薄高铝硅玻璃的性能研究[D]. 上海: 东华大学, 2018. MU H Y. Study on properties of ultra-thin high alumina silica glass strengthened by secondary ion exchange[D]. Shanghai: Donghua University, 2018 (in Chinese). [17] 展贵鑫, 宫汝华, 何 根, 等. 不同化学强化条件对玻璃盖板性能影响性研究[J]. 硅酸盐通报, 2017, 36(增刊1): 1-6. ZHAN G X, GONG R H, HE G, et al. Effects of different chemical reinforcement on the performance of glass cover plate[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(supplement 1): 1-6 (in Chinese). [18] MAKISHIMA A, MACKENZIE J D. Calculation of bulk modulus, shear modulus and Poisson's ratio of glass[J]. Journal of Non-Crystalline Solids, 1975, 17(2): 147-157. [19] AALDENBERG E M, LEZZI P J, SEAMAN J H, et al. Ion-exchanged lithium aluminosilicate glass: strength and dynamic fatigue[J]. Journal of the American Ceramic Society, 2016, 99(8): 2645-2654. [20] 蒋国昌, 尤静林, 吴永全, 等. 硅酸盐熔体微结构单元的探讨[J]. 地质地球化学, 2003, 31(4): 80-86. JIANG G C, YOU J L, WU Y Q, et al. A discussion on the micro-structural units of silicate melt[J]. Geology-geochemistry, 2003, 31(4): 80-86 (in Chinese). [21] 曾 麟, 黄守佳, 林鸿剑, 等. 混合碱效应对Li2O-Al2O3-SiO2系玻璃结构和热膨胀性能的影响[J]. 硅酸盐通报, 2021, 40(11): 3813-3821. ZENG L, HUANG S J, LIN H J, et al. Influence of mixed alkali effect on structure and thermal expansion properties of Li2O-Al2O3-SiO2 glass[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3813-3821 (in Chinese). [22] 杨伟钰. 金属玻璃中程序的分子动力学研究[D]. 哈尔滨: 哈尔滨师范大学, 2022. YANG W Y. Molecular dynamics study of program in metallic glass[D]. Harbin: Harbin Normal University, 2022 (in Chinese). [23] YOU J L, JIANG G C, HOU H Y, et al. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates[J]. Journal of Raman Spectroscopy, 2005, 36(3): 237-249. [24] AKAOGI M, ROSS N, MCMILLAN P, et al. The Mg2SiO4 polymorphs (olivine, modified spinel and spinel); thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations[J]. American Mineralogist, 1984, 69: 499-512. [25] XU K D, JIANG G C, HUANG S P, et al. A study on the bonding structure of CaO-SiO2 slag by means of molecular dynamics simulation[J]. Science in China Series E: Technological Sciences, 1999, 42(1): 77-82. [26] 尤静林, 吴志东, 王 敏, 等. 硅酸盐玻璃和熔体结构的拉曼光谱定量解析[J]. 光谱学与光谱分析, 2018, 38(增刊1): 247-248. YOU J L, WU Z D, WANG M, et al. Quantitative studies on glasses and melts of silicates[J]. Spectroscopy and Spectral Analysis, 2018, 38(supplement 1): 247-248 (in Chinese). [27] 梁晓峰, 余 涛, 任 慧. 拉曼光谱技术在玻璃材料研究中的应用[J]. 玻璃, 2013, 40(9): 12-15. LIANG X F, YU T, REN H. Application of Raman spectroscopy to investigation of glass materials[J]. Glass, 2013, 40(9): 12-15 (in Chinese). [28] 杨胜赟. 化学强化制备高强度玻璃纤维的分子动力学模拟及实验研究[D]. 济南: 济南大学, 2022. YANG S Y. Molecular dynamics simulation and experimental study on preparation of high strength glass fiber by chemical strengthening[D]. Jinan: University of Jinan, 2022 (in Chinese). [29] 李保卫, 欧阳顺利, 张雪峰, 等. 温度对CaO-MgO-Al2O3-SiO2系纳米晶玻璃陶瓷结构影响的拉曼光谱研究[J]. 光谱学与光谱分析, 2014, 34(7): 1869-1872. LI B W, OUYANG S L, ZHANG X F, et al. Effect of temperature on the structure of CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramics studied by Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(7): 1869-1872 (in Chinese). [30] 吴永全. 硅酸盐熔体微观结构及其与宏观性质关系的理论研究[D]. 上海: 上海大学, 2004. WU Y Q. Theoretical study on microstructure of silicate melt and its relationship with macroscopic properties[D]. Shanghai: Shanghai University, 2004 (in Chinese). |