[1] 田英良, 孙诗兵. 新编玻璃工艺学[M]. 北京: 中国轻工业出版社, 2009: 69, 86-122. TIAN Y L, SUN S B. New glass technology[M]. Beijing: China Light Industry Press, 2009: 69, 86-122 (in Chinese). [2] HONMA T, MAEDA K, NAKANE S, et al. Unique properties and potential of glass-ceramics[J]. Journal of the Ceramic Society of Japan, 2022, 130(8): 545-551. [3] ROSCH W, BEALL L, MAXON J, et al. Corning ULE glass can meet P-37 specifications[C]//SPIE Advanced Lithography. Proc SPIE 6517, Emerging Lithographic Technologies XI, San Jose, California, USA. 2007, 6517: 622-629. [4] SABIA R, EDWARDS M J, VANBROCKLIN R, et al. Corning 7972 ULE material for segmented and large monolithic mirror blanks[C]//SPIE Astronomical Telescopes Instrumentation. Proc SPIE 6273, Optomechanical Technologies for Astronomy, Orlando, Florida, USA. 2006, 6273: 12-19. [5] SMEDSKJAER M M, YOUNGMAN R E, MAURO J C. Principles of Pyrex glass chemistry: structure-property relationships[J].Applied Physics A, 2014, 116(2): 491-504. [6] JACKSON MJ, MILLS B. Thermal expansion of alumino-alkalisilicate and alumino-borosilicate glasses- comparison of empirical models[J]. Journal of Materials Science Letters, 1997, 16(15): 1264-1266. [7] 干福熹. 现代玻璃科学技术[M]. 上海: 上海科学技术出版社, 1990: 3. GAN F X. Modern glass science and technology[M]. Shanghai: Shanghai Science and Technology Press, 1990: 3 (in Chinese). [8] ABD EL-MONEIM A, YOUSSOF I M, SHOAIB M M. Elastic moduli prediction and correlation in SiO2-based glasses[J]. Materials Chemistry and Physics, 1998, 52(3): 258-262. [9] ZENG H D, YE F, LI X, et al. Calculation of thermal expansion coefficient of glasses based on topological constraint theory[J]. Chemical Physics Letters, 2016, 662: 268-272. [10] 曾惠丹, 邓逸凡, 李 响, 等. 基于拓扑结构束缚理论的玻璃性质计算方法[J]. 硅酸盐学报, 2018, 46(1): 1-10. ZENG H D, DENG Y F, LI X, et al. Calculations method for glass properties based on topological constraint theory[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 1-10 (in Chinese). [11] LI N, SAKIDJA R, ARYAL S, et al. Densification of a continuous random network model of amorphous SiO2 glass[J]. Physical Chemistry Chemical Physics, 2014, 16(4): 1500-1514. [12] MACHACEK J, GEDEON O, LISKA M. Elastic properties of soda-lime silica glass from first principles[J]. Ceramics-Silikaty, 2009, 53(2): 137-140. [13] ZHANG Q Y, ZHANG W J, WANG W C, et al. Calculation of physical properties of glass via the phase diagram approach[J]. Journal of Non-Crystalline Solids, 2017, 457: 36-43. [14] JIANG Z H, ZHANG Q Y. The structure of glass: a phase equilibrium diagram approach[J]. Progress in Materials Science, 2014, 61: 144-215. [15] ZANOTTO E D, COUTINHO F A B. How many non-crystalline solids can be made from all the elements of the periodic table?[J]. Journal of Non-Crystalline Solids, 2004, 347(1/2/3): 285-288. [16] 董国平, 万天择, 吴敏波, 等. 玻璃基因工程在激光玻璃等光功能玻璃领域的研究进展[J]. 激光与光电子学进展, 2022, 59(15): 1516002. DONG G P, WAN T Z, WU M B, et al. Recent applications of glass genetic engineering in laser glasses and other advanced optical glasses[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516002 (in Chinese). [17] 刘梓葵. 关于材料基因组的基本观点及展望[J]. 科学通报, 2013, 58(35): 3618-3622. LIU Z K. Basic viewpoints and prospects of material genome project[J]. Chinese Science Bulletin, 2013, 58(35): 3618-3622 (in Chinese). [18] LIU Y, GUO B R, ZOU X X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Materials, 2020, 31: 434-450. [19] 段志强, 裴小龙, 郭庆伟, 等. 多模态混合输入模拟实验过程实现新型Al-Si-Mg系合金设计[J]. 物理学报, 2023, 72(2): 307-317. DUAN Z Q, PEI X L, GUO Q W, et al. Design of new Al-Si-Mg alloys by multi-modal mixed input simulation experiment[J]. Acta Physica Sinica, 2023, 72(2): 307-317 (in Chinese). [20] DE PABLO J J, JACKSON N E, WEBB M A, et al. New frontiers for the materials genome initiative[J]. Computational Materials, 2019, 5: 41. [21] LIU H, FU Z P, YANG K, et al. Machine learning for glass science and engineering: a review[J]. Journal of Non-Crystalline Solids, 2021, 557: 119419. [22] MAURO J C, TANDIA A, VARGHEESE K D, et al. Accelerating the design of functional glasses through modeling[J]. Chemistry of Materials, 2016, 28(12): 4267-4277. [23] CASSAR D R, DE CARVALHO A C P L F, ZANOTTO E D. Predicting glass transition temperatures using neural networks[J]. Acta Materialia, 2018, 159: 249-256. [24] CASSAR D R, MASTELINI S M, BOTARI T, et al. Predicting and interpreting oxide glass properties by machine learning using large datasets[J]. Ceramics International, 2021, 47(17): 23958-23972. [25] DENG B H. Machine learning on density and elastic property of oxide glasses driven by large dataset[J]. Journal of Non-Crystalline Solids, 2020, 529: 119768. [26] YANG K, XU X Y, YANG B, et al. Predicting the Young's modulus of silicate glasses using high-throughput molecular dynamics simulations and machine learning[J]. Scientific Reports, 2019, 9: 8739. [27] HU Y J, ZHAO G, ZHANG M F, et al. Predicting densities and elastic moduli of SiO2-based glasses by machine learning[J]. Computational Materials, 2020, 6: 25. [28] RAVINDER R, SRIDHARA K H, BISHNOI S, et al. Deep learning aided rational design of oxide glasses[J]. Materials Horizons, 2020, 7(7): 1819-1827. [29] EPAM systems. Sciglass database[DB/OL]. (2019-11-06)[2023-05-06]. https://github.com/epam/SciGlass. [30] LUNDBERG S, LEE S I. A Unified approach to interpreting model predictions[C]// 31st Annual Conference on Neural Information Processing Systems, Long Beach, America, 2017. [31] BREIMAN L. Random forests[J].Machine Learning, 2001, 45(1): 5-32. [32] BIAU G, SCORNET E. A random forest guided tour[J].TEST, 2016, 25(2): 197-227. [33] SCHONLAU M, ZOU R Y. The random forest algorithm for statistical learning[J]. The Stata Journal: Promoting Communications on Statistics and Stata, 2020, 20(1): 3-29. [34] PEDREGOSA F, VAROQUAUX G, GRAMFORT A. Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. [35] 黄依平, 舒众众, 曹志强, 等. 复合澄清剂在TFT基板玻璃熔制过程中的作用机理[J]. 硅酸盐通报, 2021, 40(11): 3799-3806. HUANG Y P, SHU Z Z, CAO Z Q, et al. Mechanism of compound refining agents for TFT substrate glass melting process[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3799-3806 (in Chinese). [36] PEDONE A, MALAVASI G, CORMACK A N, et al. Insight into elastic properties of binary alkali silicate glasses: prediction and interpretation through atomistic simulation techniques[J]. Chemistry of Materials, 2007, 19(13): 3144-3154. [37] LUO Z W, LEI W C, LIANG H Z, et al. Improving sealing properties of CaO-SrO-Al2O3-SiO2 glass and glass-ceramics for solid oxide fuel cells: effect of La2O3 addition[J]. Ceramics International, 2020, 46(11): 17698-17706. [38] 曾 麟, 黄守佳, 林鸿剑, 等. 混合碱效应对Li2O-Al2O3-SiO2系玻璃结构和热膨胀性能的影响[J]. 硅酸盐通报, 2021, 40(11): 3813-3821. ZENG L, HUANG S J, LIN H J, et al. Influence of mixed alkali effect on structure and thermal expansion properties of Li2O-Al2O3-SiO2 glass[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3813-3821 (in Chinese). [39] KE Z K, CAO X, SHAN C L, et al. The effect of alkali metal oxide on the properties of borosilicate fireproof glass: structure, thermal properties, viscosity, chemical stability[J]. Ceramics International, 2021, 47(14): 19605-19613. [40] KILINC E, BELL A M T, BINGHAM P A, et al. Effects of composition and phase relations on mechanical properties and crystallization of silicate glasses[J]. Journal of the American Ceramic Society, 2021, 104(8): 3921-3946. [41] MASAI H, FUJII Y, KITAMURA N, et al. Relationship between the elastic properties and structure of BaO-TiO2-GeO2-SiO2 glasses[J]. Journal of Non-Crystalline Solids, 2022, 576: 121248. [42] CUI J D, CAO X, SHI L F, et al. The effect of substitution of Al2O3 and B2O3 for SiO2 on the properties of cover glass for liquid crystal display: structure, thermal, visco-elastic, and physical properties[J]. International Journal of Applied Glass Science, 2021, 12(3): 443-456. [43] NEMBRINI S, KNIG I, WRIGHT M N. The revival of the gini importance?[J]. Bioinformatics, 2018, 34: 3711-3718. [44] 曹桃云. 基于随机森林的变量重要性研究[J]. 统计与决策, 2022, 38(4): 60-63. CAO T Y. Study on the importance of variables based on random forest[J]. Statistics & Decision, 2022, 38(4): 60-63 (in Chinese). [45] LUNDBERG S M, ERION G, CHEN H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence, 2020, 2(1): 56-67. [46] 雷 宁, 姜中宏, 李 郁. 碲酸盐激光玻璃的结构分析[J]. 无机材料学报, 1997, 12(3): 381-385. LEI N, JIANG Z H, LI Y. Structure analysis of tellurite laser glass[J]. Journal of Inorganic Materials, 1997, 12(3): 381-385 (in Chinese). [47] 罗丽庆, 王海波, 林 健, 等. 碲酸盐系统玻璃的研究进展[J]. 光电子技术与信息, 2005(1): 1-6. LUO L Q, WANG H B, LIN J, et al. Research and progress on the tellurite glasses[J]. Optoelectronic Technology & Information, 2005(1): 1-6 (in Chinese). [48] GAO C X, ZHAO X X, LI B. Influence of Y2O3 on microstructure, crystallization, and properties of MgO-Al2O3-SiO2 glass-ceramics[J]. Journal of Non-Crystalline Solids, 2021, 560: 120728. [49] 何 峰, 房 玉, 刘 佳, 等. B2O3对硼硅酸盐玻璃结构和性能的影响[J]. 武汉理工大学学报, 2012, 34(2): 1-4. HE F, FANG Y, LIU J, et al. Effect of B2O3 on structure and properties of borosilicate glass[J]. Journal of Wuhan University of Technology, 2012, 34(2): 1-4 (in Chinese). [50] YOSHIDA S, TANAKA H, HAYASHI T, et al. Scratch resistance of sodium borosilicate glass[J]. Journal of the Ceramic Society of Japan, 2001, 109(1270): 511-515. [51] 中华人民共和国建设部. 玻璃幕墙工程技术规范: JGJ 102—2003[S]. 北京: 中国建筑工业出版社, 2004. Ministry of Construction of the People's Republic of China. Technical code for glass curtain wall engineering: JGJ 102—2003[S]. Beijing: China Architecture & Building Press, 2004 (in Chinese). |