[1] 邹 敏, 沈 玉, 刘娟红. 钢渣粉在水泥基材料中应用研究综述[J]. 硅酸盐通报, 2021, 40(9): 2964-2977. ZOU M, SHEN Y, LIU J H. Review on application of steel slag powder in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2964-2977 (in Chinese). [2] PANG L, LIAO S C, WANG D Q, et al. Influence of steel slag fineness on the hydration of cement-steel slag composite pastes[J]. Journal of Building Engineering, 2022, 57: 104866. [3] 李霖霖, 王 宇, 李 辉. 钢渣泡沫混凝土的制备及抗压强度计算方法[J]. 新型建筑材料, 2022, 49(12): 135-139. LI L L, WANG Y, LI H. Preparation and compressive strength calculation method of steel slag foam concrete[J]. New Building Materials, 2022, 49(12): 135-139 (in Chinese). [4] RASCHIA S, TATTOLO S. Use of alternative aggregates for the production of hot-mix asphalt surface layers: a performance evaluation[J]. Construction and Building Materials, 2022, 345: 128369. [5] HE F, FANG Y, XIE J L, et al. Fabrication and characterization of glass-ceramics materials developed from steel slag waste[J]. Materials & Design, 2012, 42: 198-203. [6] 李 沙, 王肇嘉, 王明威, 等. 钢渣在水泥基胶凝材料中重金属的长期浸出行为研究[J/OL]. 环境工程: 1-13(2022-08-04)[2023-03-01]. https://kns.cnki.net/kcms/detail/11.2097.X.20220803.1752.012.html. LI S, WANG Z J, WANG M W, et al. Study on long-term leaching behavior of heavy metals from steel slag in cement-based cementitious materials[J/OL]. Environmental Engineering: 1-13 (2022-08-04)[2013-03-01]. https://kns.cnki.net/kcms/detail/11.2097.X.20220803.1752.012.html (in Chinese). [7] LIU Y G, HU X J, WANG H, et al. Photoreduction of Cr(VI) from acidic aqueous solution using TiO2-impregnated glutaraldehyde-crosslinked alginate beads and the effects of Fe(III) ions[J]. Chemical Engineering Journal, 2013, 226: 131-138. [8] 霍泽坤. 钢渣的高温重构对其组成、结构及性能的影响研究[D]. 邯郸: 河北工程大学, 2021: 22-24. HUO Z K. Study on the effect of high temperature reconstruction of steel slag on its composition, structure and properties[D]. Handan: Hebei University of Engineering, 2021: 22-24 (in Chinese). [9] 李喜才, 刘晓文, 李 明. 高活性钢渣粉应用于胶凝材料技术研究[J]. 中国水泥, 2022(4): 115-118. LI X C, LIU X W, LI M, et al. Research on the application of highly-active steel slag powder in cementitious materials[J]. China Cement, 2022(4): 115-118 (in Chinese). [10] 朱国华, 钱亚生, 金立国. 钢渣体积安定性与改性钢渣粉的开发利用[J]. 中国水泥, 2022(3): 86-90. ZHU G H, QIAN Y S, JIN L G, et al. Volume stability of steel slag and development and utilization of modified steel slag powder[J]. China Cement, 2022(3): 86-90 (in Chinese). [11] 张 宇, 黎学润, 许文龙, 等. 转炉渣粉粉磨性能[J]. 南京工业大学学报(自然科学版), 2015, 37(1): 38-43+53. ZHANG Y, LI X R, XU W L, et al. Grindability property of rotating furnace slags[J]. Journal of Nanjing Tech University (Natural Science Edition), 2015, 37(1): 38-43+53 (in Chinese). [12] 张 笛, 杨 义, 黄小青, 等. 钢渣分相熟料研究与应用进展[J]. 新世纪水泥导报, 2019, 25(5): 22-26+6. ZHANG D, YANG Y, HUANG X Q, et al. Research and application progress in multi-phased clinker[J]. Cement Guide for New Epoch, 2019, 25(5): 22-26+6 (in Chinese). [13] 沈卫国, 李剑超, 李将伟, 等. 一种预分选钢渣分相熟料水泥生产工艺: CN107540250A[P]. 2018-01-05. SHEN W G, LI J C, LI J W, et al. A production process of pre-separated steel slag phase-separated clinker cement: CN107540250A[P]. 2018-01-05 (in Chinese). [14] ZHAO D Q, ZHANG D, SHEN W G, et al. Investigation on industrial trial production of multi-phased clinker with crude granular steel slag[J]. Journal of Cleaner Production, 2022, 337: 130467. [15] HE T S, LI Z B, ZHAO S Y, et al. Effect of reductive component-conditioning materials on the composition, structure, and properties of reconstructed BOF slag[J]. Construction and Building Materials, 2020, 255: 119269. [16] ZHANG S P, GHOULEH Z, MUCCI A, et al. Production of cleaner high-strength cementing material using steel slag under elevated-temperature carbonation[J]. Journal of Cleaner Production, 2022, 342: 130948. [17] 代文彬. 钢渣热态改质的工艺、装备及制备微晶玻璃的研究[D]. 北京: 北京科技大学, 2016: 6-10. DAI W B. Study on steel slag hot modification process, equipment and preparation for glass-ceramics manufacturing[D]. Beijing: University of Science and Technology Beijing, 2016: 6-10 (in Chinese). [18] ZHAO J H, YAN P Y, WANG D M. Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle[J]. Journal of Cleaner Production, 2017, 156: 50-61. [19] 任建波, 张露瑶, 王 倩, 等. 水泥生产铬的来源及水溶性铬(VI)的转化研究[J]. 水泥, 2020(11): 1-5. REN J B, ZHANG L Y, WANG Q, et al. Source of chromium in cement production and converson research of water soluble chromium(VI)[J]. Cement, 2020(11): 1-5 (in Chinese). [20] 何晨海, 张 健, 李京涛, 等. 钢渣中铬元素的存在形态及分布特性[J]. 水泥, 2022(1): 6-9. HE C H, ZHANG J, LI J T, et al. Existence form and distribution characteristics of chromium in steel slag[J]. Cement, 2022(1): 6-9 (in Chinese). [21] 张震震, 曹 流, 杨 义, 等. 钢渣分相熟料室内模拟初步实验研究[J]. 武汉理工大学学报, 2019, 41(8): 12-16. ZHANG Z Z, CAO L, YANG Y, et al. Preliminary experimental study on indoor simulation of steel slag multi-phased clinker[J]. Journal of Wuhan University of Technology, 2019, 41(8): 12-16 (in Chinese). [22] 李茂森, 江金萍, 刘 怀, 等. 锂渣和钢渣对水泥浆体力学性能与微观结构的影响[J]. 硅酸盐通报, 2022, 41(6): 2098-2107. LI M S, JIANG J P, LIU H, et al. Effects of lithium slag and steel slag on mechanical properties and microstructure of cement paste[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2098-2107 (in Chinese). [23] 赵海晋, 余其俊, 韦江雄, 等. 组成和温度对重构钢渣结构及早期水化活性的影响[J]. 建筑材料学报, 2012, 15(3): 399-405. ZHAO H J, YU Q J, WEI J X, et al. Effect of composition and temperature on structure and early hydration activity of modified steel slag[J]. Journal of Building Materials, 2012, 15(3): 399-405 (in Chinese). [24] 甘万贵, 周晟明. 不同类型钢渣组分和结构特征及其钢渣粉技术特点比较[J]. 新世纪水泥导报, 2022, 28(1): 1-5. GAN W G, ZHOU S M. Comparison of composition and structural characteristics of different types of steel slag and technical characteristics of steel slag powder[J]. Cement Guide for New Epoch, 2022, 28(1): 1-5 (in Chinese). [25] TSAKIRIDIS P E, PAPADIMITRIOU G D, TSIVILIS S, et al. Utilization of steel slag for Portland cement clinker production[J]. Journal of Hazardous Materials, 2008, 152(2): 805-811. |