[1] SHI C J, JIMÉNEZ A F, PALOMO A. New cements for the 21st century: the pursuit of an alternative to Portland cement[J]. Cement and Concrete Research, 2011, 41(7): 750-763. [2] BERNAL S A, PROVIS J L. Durability of alkali-activated materials: progress and perspectives[J]. Journal of the American Ceramic Society, 2014, 97(4): 997-1008. [3] FANG Y, WANG A X, HE K Z, et al. Property evolution of geopolymer composites with SiC whiskers loaded with BN coating at elevated temperatures[J]. Construction and Building Materials, 2021, 309: 125130. [4] GÜLLÜ H, ALI AGHA A. The rheological, fresh and strength effects of cold-bonded geopolymer made with metakaolin and slag for grouting[J]. Construction and Building Materials, 2021, 274: 122091. [5] SONEBI M, LACHEMI M, HOSSAIN K M A. Optimisation of rheological parameters and mechanical properties of superplasticised cement grouts containing metakaolin and viscosity modifying admixture[J]. Construction and Building Materials, 2013, 38: 126-138. [6] PARK C K, NOH M H, PARK T H. Rheological properties of cementitious materials containing mineral admixtures[J]. Cement and Concrete Research, 2005, 35(5): 842-849. [7] XIE J T, KAYALI O. Effect of superplasticiser on workability enhancement of class F and class C fly ash-based geopolymers[J]. Construction and Building Materials, 2016, 122: 36-42. [8] LU C F, ZHANG Z H, SHI C J, et al. Rheology of alkali-activated materials: a review[J]. Cement and Concrete Composites, 2021, 121: 104061. [9] JIAO D W, SHI C J, YUAN Q, et al. Effect of constituents on rheological properties of fresh concrete: a review[J]. Cement and Concrete Composites, 2017, 83: 146-159. [10] ISHWARYA G, SINGH B, DESHWAL S, et al. Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes[J]. Cement and Concrete Composites, 2019, 97: 226-238. [11] 郭晓潞, 施惠生, 胡文佩, 等. 固废基复合地聚合物的凝结时间与流变性能[J]. 同济大学学报(自然科学版), 2016, 44(7): 1066-1070. GUO X L, SHI H S, HU W P, et al. Setting time and rheological properties of solid waste-based composite geopolymers[J]. Journal of Tongji University (Natural Science), 2016, 44(7): 1066-1070 (in Chinese). [12] LI L, WEI Y J, LI Z L, et al. Rheological and viscoelastic characterizations of fly ash/slag/silica fume-based geopolymer[J]. Journal of Cleaner Production, 2022, 354: 131629. [13] YUAN Q, HUANG Y L, HUANG T J, et al. Effect of activator on rheological properties of alkali-activated slag-fly ash pastes[J].Journal of Central South University, 2022, 29(1): 282-295. [14] 殷素红, 管海宇, 胡 捷, 等. 碱激发粉煤灰-矿渣灌浆材料的流变性与流动性[J]. 华南理工大学学报(自然科学版), 2019, 47(8): 120-128+135. YIN S H, GUAN H Y, HU J, et al. Rheological properties and fluidity of alkali-activated fly ash-slag grouting material[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(8): 120-128+135 (in Chinese). [15] 文梓芸, 晏 锦, 殷素红. 硅酸钠溶液流变特性及其对土聚新拌物性能的影响[J]. 建筑材料学报, 2011, 14(6): 723-729. WEN Z Y, YAN J, YIN S H. Rheological characteristics of sodium silicate solution and its effects on the performance of geopolymer slurry[J]. Journal of Building Materials, 2011, 14(6): 723-729 (in Chinese). [16] 梁健俊, 马玉玮, 黄 科, 等. 粉煤灰物理化学性能对碱激发材料的影响[J]. 硅酸盐通报, 2016, 35(8): 2497-2502. LIANG J J, MA Y W, HUANG K, et al. Influence of the physical and chemical properties of fly ash on the alkali-activated fly ash/slag[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(8): 2497-2502 (in Chinese). [17] NATH P, SARKER P K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition[J]. Construction and Building Materials, 2014, 66: 163-171. [18] LEE N, LEE H. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature[J]. Construction and Building Materials, 2013, 47: 1201-1209. [19] 彭玉清, 郭荣鑫, 林志伟, 等. 粉煤灰-矿渣基地聚合物砂浆凝结时间及力学性能试验研究[J]. 新型建筑材料, 2021, 48(12): 138-144. PENG Y Q, GUO R X, LIN Z W, et al. Experimental study on setting time and mechanical properties of fly ash-slag geopolymer mortar[J]. New Building Materials, 2021, 48(12): 138-144 (in Chinese). [20] 刘梦珠, 卞立波, 王 琴, 等. 碱激发矿渣/粉煤灰胶凝材料力学性能研究[J]. 粉煤灰综合利用, 2019, 32(5): 49-54. LIU M Z, BIAN L B, WANG Q, et al. Study on mechanical properties of alkali-activated slag/fly ash cementitious material[J]. Fly Ash Comprehensive Utilization, 2019, 32(5): 49-54 (in Chinese). [21] JANG J G, LEE N K, LEE H K. Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers[J]. Construction and Building Materials, 2014, 50: 169-176. [22] BAKHAREV T. Geopolymeric materials prepared using class F fly ash and elevated temperature curing[J]. Cement and Concrete Research, 2005, 35(6): 1224-1232. [23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346—2011[S]. 北京: 中国标准出版社, 2011. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Test methods for water requirement of normal consistency, setting time and soundness of portland cement: GB/T 1346—2011[S]. Beijing: Standards Press of China, 2011 (in Chinese). [24] HU C, DE LARRARD F. The rheology of fresh high-performance concrete[J]. Cement and Concrete Research, 1996, 26(2): 283-294. [25] LARRARD F, FERRARIS C F, SEDRAN T. Fresh concrete: a Herschel-bulkley material[J]. Materials and Structures, 1998, 31(7): 494-498. [26] YAHIA A, KHAYAT K H. Analytical models for estimating yield stress of high-performance pseudoplastic grout[J]. Cement and Concrete Research, 2001, 31(5): 731-738. [27] 薛 薇. 统计分析与SPSS的应用[M]. 4版. 北京: 中国人民大学出版社, 2014: 185-188. XUE W. Statistical analysis and application of SPSS[M]. 4th ed. Beijing: China Renmin University Press, 2014: 185-188 (in Chinese). [28] NEVILLE A M. Properties of concrete[M]. 4th ed. England: Pearson Education Limited, 2008: 257-258. [29] 王栋民, 张力冉, 张伟利, 等. 超塑化剂对新拌水泥浆体多级絮凝结构的影响[J]. 建筑材料学报, 2012, 15(6): 755-759. WANG D M, ZHANG L R, ZHANG W L, et al. Effects of superplasticizers on multi-level flocculation structure of fresh cement paste[J]. Journal of Building Materials, 2012, 15(6): 755-759 (in Chinese). [30] CRIADO M, PALOMO A, FERNÁNDEZ-JIMÉNEZ A, et al. Alkali activated fly ash: effect of admixtures on paste rheology[J].Rheologica Acta, 2009, 48(4): 447-455. [31] BERNAL S A, PROVIS J L, ROSE V, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends[J]. Cement and Concrete Composites, 2011, 33(1): 46-54. [32] PULIGILLA S, MONDAL P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer[J]. Cement and Concrete Research, 2013, 43: 70-80. [33] 杨 涛, 姚 晓, 顾光伟, 等. 矿渣掺量对碱激发粉煤灰-矿渣反应过程及产物组成的影响[J]. 南京工业大学学报(自然科学版), 2015, 37(5): 19-26. YANG T, YAO X, GU G W, et al. Effects of slag on reaction and composition of alkali-activated fly ash-slag blends[J]. Journal of Nanjing Tech University (Natural Science Edition), 2015, 37(5): 19-26 (in Chinese). [34] 张大旺. 地质聚合物新拌浆体流变性、微结构与界面研究[D]. 北京: 中国矿业大学(北京), 2019. ZHANG D W. Study on the rheology, microstructure, and interface of geopolymer fresh pastes[D]. Beijing: China University of Mining & Technology, Beijing, 2019 (in Chinese). [35] RIFAAI Y, YAHIA A, MOSTAFA A, et al. Rheology of fly ash-based geopolymer: effect of NaOH concentration[J]. Construction and Building Materials, 2019, 223: 583-594. [36] 贾屹海, 韩敏芳, 孟宪娴, 等.粉煤灰地质聚合物凝结时间的研究[J]. 硅酸盐通报, 2009, 28(5): 893-899. JIA Y H, HAN M F, MENG X X, et al. Study on setting time of fly ash-based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(5): 893-899 (in Chinese). [37] 王 聪. 碱激发胶凝材料的性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. WANG C. Research on the properties of alkali-excited cementitious materials[D]. Harbin: Harbin Institute of Technology, 2006 (in Chinese). |