[1] 谢遵党, David J.Reddish. 世界深埋长隧洞建设中的问题及应对措施[J]. 人民黄河, 2004, 26(10): 37-39. XIE Z D, DAVID J R. Problems and countermeasures in the construction of deep-buried long tunnels in the world[J]. Yellow River, 2004, 26(10): 37-39 (in Chinese). [2] 柯敏勇, 余春海, 郭 宇. 高岩温发电引水隧洞支护结构全过程温度场分析[J]. 南昌工程学院学报, 2018, 37(6): 32-37. KE M Y, YU C H, GUO Y. Analysis of whole process temperature distribution of supporting structures in diversion tunnel with high rock temperature power[J]. Journal of Nanchang Institute of Technology, 2018, 37(6): 32-37 (in Chinese). [3] COLLEPARDI M. A state-of-the-art review on delayed ettringite attack on concrete[J]. Cement and Concrete Composites, 2003, 25(4/5): 401-407. [4] 文庆军, 丁华柱, 刘兴平, 等. 延迟钙矾石形成、特征和膨胀机理概述[J]. 四川建材, 2017, 43(9): 3-4. WEN Q J, DING H Z, LIU X P, et al. Overview of delayed ettringite formation, characteristics and expansion mechanism[J]. Sichuan Building Materials, 2017, 43(9): 3-4 (in Chinese). [5] 余 帆, 黄煜镔, 曹金露, 等. 延迟钙矾石的研究进展[J]. 硅酸盐通报, 2014, 33(7): 1682-1688. YU F, HUANG Y B, CAO J L, et al. Research progress of delayed ettringite formation[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(7): 1682-1688 (in Chinese). [6] 周剑波. 延迟钙矾石生成影响因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. ZHOU J B. Research on influence factors of delayed ettringite formation[D]. Harbin: Harbin Institute of Technology, 2011 (in Chinese). [7] 阎培渝, 覃 肖, 杨文言. 大体积补偿收缩混凝土中钙矾石的分解与二次生成[J]. 硅酸盐学报, 2000, 28(4): 319-324. YAN P Y, QIN X, YANG W Y. Decomposition and delayed formation of ettringite in shrinkage-compensating massive concrete[J]. Journal of the Chinese Ceramic Society, 2000, 28(4): 319-324 (in Chinese). [8] SHIMADA Y. Chemical path of ettringite formation in heat-cured mortar and its relationship to expansion[D]. Ph.D.Thesis, 2005. [9] LAWRENCE B L, MYERS J J, CARRASSQUILLO R L. Premature concrete deterioration in texas department of transportation precast elements[C]//“SP-177: Ettringite, the Sometimes Host of Destruction”. American Concrete Institute, 1999. [10] TAYLOR H F W, FAMY C, SCRIVENER K L. Delayed ettringite formation[J]. Cement and Concrete Research, 2001, 31(5): 683-693. [11] ZHANG Z Z, OLEK J, DIAMOND S. Studies on delayed ettringite formation in early-age, heat-cured mortars[J]. Cement and Concrete Research, 2002, 32(11): 1729-1736. [12] BRUNETAUD X, DIVET L, DAMIDOT D. Impact of unrestrained delayed ettringite formation-induced expansion on concrete mechanical properties[J]. Cement and Concrete Research, 2008, 38(11): 1343-1348. [13] 余黄昏, 杨佳资, 王 龙, 等. 大体积混凝土延迟钙矾石反应预防和控制措施[J]. 企业技术开发, 2015, 34(24): 149-152. YU H H, YANG J Z, WANG L, et al. Prevention and control measures of delayed ettringite reaction in mass concrete[J]. Technological Development of Enterprise, 2015, 34(24): 149-152 (in Chinese). [14] 马惠珠, 邓 敏, 朱建强. 混凝土中钙矾石的重结晶[J]. 材料导报, 2007, 21(s1): 353-355. MA H Z, DENG M, ZHU J Q. Ettringite rerystallization in concrete[J]. Materials Review, 2007, 21(s1): 353-355 (in Chinese). [15] 周建伟, 杨 文, 程宝军, 等. 超细粉煤灰和偏高岭土对高强混凝土耐热性能的影响[J]. 硅酸盐通报, 2020, 39(6): 1784-1790. ZHOU J W, YANG W, CHENG B J, et al. Effect of ultra-fine fly ash and metakaolin on heat resistance of high strength concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1784-1790 (in Chinese). [16] PLIMPTON S, CROZIER P, THOMPSON A. LAMMPS-large-scale atomic/molecular massively parallel simulator[J]. Sandia National Laboratories, 2007, 18: 43. [17] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. [18] CANNON W R, PETTITT B M, MCCAMMON J A. Sulfate anion in water: model structural, thermodynamic, and dynamic properties[J]. The Journal of Physical Chemistry, 1994, 98(24): 6225-6230. [19] HOU D S, LI T, HAN Q H, et al. Insight on the sodium and chloride ions adsorption mechanism on the ettringite crystal: structure, dynamics and interfacial interaction[J]. Computational Materials Science, 2018, 153: 479-492. [20] LI J H, GAO L J, HOU D S, et al. Insights on the ion migration throughout the nano-channel of ettringite under an external electric field: structure, dynamics, and mechanisms[J]. Construction and Building Materials, 2020, 262: 120074. [21] 张文生, 张金山, 叶家元, 等. 合成条件对钙矾石形貌的影响[J]. 硅酸盐学报, 2017, 45(5): 631-638. ZHANG W S, ZHANG J S, YE J Y, et al. Influence of synthesis conditions on morphology of ettringite[J]. Journal of the Chinese Ceramic Society, 2017, 45(5): 631-638 (in Chinese). [22] WU M, ZHANG Y, JIA Y, et al. Effects of sodium sulfate on the hydration and properties of lime-based low carbon cementitious materials[J]. Journal of Cleaner Production, 2019, 220: 677-687. [23] 武华荟, 刘宝举. 硅酸盐水泥水化机理研究方法[J]. 粉煤灰, 2009, 21(1): 33-36. WU H H, LIU B J. Research method of silicate cement hydration mechanism[J]. Coal Ash, 2009, 21(1): 33-36 (in Chinese). [24] 李 远. 水泥基材料早期水化过程与微观结构研究[D]. 武汉: 武汉理工大学, 2012. LI Y. Investigation on the early hydration and microstructure of cement-based materials[D]. Wuhan: Wuhan University of Technology, 2012 (in Chinese). [25] WANG P, DUAN Y Y, ZHENG H P, et al. Molecular structure and dynamics of water on the surface of cement hydration products: wetting behavior at nanoscale[J]. Applied Surface Science, 2023, 611: 155713. |