硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (2): 541-553.
所属专题: 资源综合利用
陈潇1,2, 张浩宇2, 薛鑫3, 杨寅2, 龚天天2, 张刘阳2
收稿日期:
2022-09-14
修订日期:
2022-11-22
出版日期:
2023-02-15
发布日期:
2023-03-07
作者简介:
陈 潇(1981—),男,博士,副研究员。主要从事水泥基功能材料与固废资源化利用的研究。E-mail:chenxiao1981@whut.edu.cn
基金资助:
CHEN Xiao1,2, ZHANG Haoyu2, XUE Xin3, YANG Yin2, GONG Tiantian2, ZHANG Liuyang2
Received:
2022-09-14
Revised:
2022-11-22
Online:
2023-02-15
Published:
2023-03-07
摘要: 随着固废资源化利用成为当下研究的热点,近年来采用固体废弃物制备蒸压加气混凝土的研究成果层出不穷。但固体废弃物由于种类繁多,特点不一,对蒸压加气混凝土的干密度和抗压强度等关键性能的影响规律和影响机理并不明晰,亟需进行归纳总结。本文首先从基体和孔结构两方面分析归纳了影响蒸压加气混凝土干密度和抗压强度的主要因素,之后从固体废弃物做硅质材料、钙质材料和发气材料三个方面分析了其对蒸压加气混凝土干密度和强度的影响规律和影响机理,最后总结了当前研究中存在的问题并对未来的研究方向进行了展望。
中图分类号:
陈潇, 张浩宇, 薛鑫, 杨寅, 龚天天, 张刘阳. 固体废弃物在蒸压加气混凝土中的应用现状综述[J]. 硅酸盐通报, 2023, 42(2): 541-553.
CHEN Xiao, ZHANG Haoyu, XUE Xin, YANG Yin, GONG Tiantian, ZHANG Liuyang. Review on Application of Solid Wastes in Autoclaved Aerated Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(2): 541-553.
[1] BONAKDAR A, BABBITT F, MOBASHER B. Physical and mechanical characterization of Fiber-Reinforced Aerated Concrete (FRAC)[J]. Cement and Concrete Composites, 2013, 38: 82-91. [2] 陈胜利. 加气混凝土的生产及应用[J]. 砖瓦, 2007(7): 50-52. CHEN S L. Use of aerated concrete and production technology[J]. Block-Brick-Tile, 2007(7): 50-52 (in Chinese). [3] KALPANA M, MOHITH S. Study on autoclaved aerated concrete: review[J]. Materials Today: Proceedings, 2020, 22: 894-896. [4] KARAKURT C, KURAMA H, TOPÇU İ B. Utilization of natural zeolite in aerated concrete production[J]. Cement and Concrete Composites, 2010, 32(1): 1-8. [5] JIANG J, MA B, CAI Q, et al. Utilization of ZSM-5 waste for the preparation of autoclaved aerated concrete (AAC): mechanical properties and reaction products[J]. Construction and Building Materials, 2021, 297: 123821. [6] CHEN Y L, CHANG J E, LAI Y C, et al. A comprehensive study on the production of autoclaved aerated concrete: effects of silica-lime-cement composition and autoclaving conditions[J]. Construction and Building Materials, 2017, 153: 622-629. [7] NARAYANAN N, RAMAMURTHY K. Structure and properties of aerated concrete: a review[J]. Cement and Concrete Composites, 2000, 22(5): 321-329. [8] HAMAD A J. Materials, production, properties and application of aerated lightweight concrete: review[J]. International Journal of Materials Science and Engineering, 2014, 2: 154-157. [9] QU X L, ZHAO X G. Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete—A review[J]. Construction and Building Materials, 2017, 135: 505-516. [10] MOSTAFA N Y. Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete[J]. Cement and Concrete Research, 2005, 35(7): 1349-1357. [11] MA B G, CAI L X, LI X G, et al. Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products[J]. Journal of Cleaner Production, 2016, 127: 162-171. [12] KUNCHARIYAKUN K, ASAVAPISIT S, SINYOUNG S. Influence of partial sand replacement by black rice husk ash and bagasse ash on properties of autoclaved aerated concrete under different temperatures and times[J]. Construction and Building Materials, 2018, 173: 220-227. [13] 王长龙, 乔春雨, 王 爽, 等. 煤矸石与铁尾矿制备加气混凝土的试验研究[J]. 煤炭学报, 2014, 39(4): 764-770. WANG C L, QIAO C Y, WANG S, et al. Experimental study on autoclaved aerated concrete from coal gangue and iron ore tailings[J]. Journal of China Coal Society, 2014, 39(4): 764-770 (in Chinese). [14] CAI L X, LI X G, LIU W L, et al. The slurry and physical-mechanical performance of autoclaved aerated concrete with high content solid wastes: effect of grinding process[J]. Construction and Building Materials, 2019, 218: 28-39. [15] 府坤荣. 采用最佳钙硅比确保加气混凝土品质[J]. 新型建筑材料, 2012, 39(1): 48+52. FU K R. Ensuring aerated concrete quality with optimal Ca/Si ratio[J]. New Building Materials, 2012, 39(1): 48+52 (in Chinese). [16] 杨伟军, 李 炜. 蒸压粉煤灰加气混凝土砌块生产及应用技术[M]. 北京: 中国建筑工业出版社, 2011. YANG W J, LI W. Production and application technology of autoclaved fly ash aerated concrete block[M]. Beijing: China Architecture and Building Press, 2011 (in Chinese). [17] ISU N, ISHIDA H, MITSUDA T. Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete (I) tobermorite formation[J]. Cement and Concrete Research, 1995, 25(2): 243-248. [18] SIAUCIUNAS R, BALTAKYS K. Formation of gyrolite during hydrothermal synthesis in the mixtures of CaO and amorphous SiO2 or quartz[J]. Cement and Concrete Research, 2004, 34(11): 2029-2036. [19] 马保国, 钟开红, 蹇守卫, 等. 水化产物对粉煤灰加气混凝土强度的影响[J]. 墙材革新与建筑节能, 2004(5): 28-31+3. MA B G, ZHONG K H, JIAN S W, et al. Hydration products affected the strength of fly ash aerated concrete[J]. Walling Material Innovation and Energy Conservation of Buildings, 2004(5): 28-31+3 (in Chinese). [20] SONG Y M, GUO C C, QIAN J S, et al. Effect of the Ca-to-Si ratio on the properties of autoclaved aerated concrete containing coal fly ash from circulating fluidized bed combustion boiler[J]. Construction and Building Materials, 2015, 83: 136-142. [21] KUNCHARIYAKUN K, ASAVAPISIT S, SOMBATSOMPOP K. Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate[J]. Cement and Concrete Composites, 2015, 55: 11-16. [22] WU R D, DAI S B, JIAN S W, et al. Utilization of solid waste high-volume calcium coal gangue in autoclaved aerated concrete: physico-mechanical properties, hydration products and economic costs[J]. Journal of Cleaner Production, 2021, 278: 123416. [23] 彭军芝. 蒸压加气混凝土中孔的形成、特征及对性能的影响研究[D]. 重庆: 重庆大学, 2011. PENG J Z. Study on the forming, characterization and effection of autoclaved aerated concrete pores[D]. Chongqing: Chongqing University, 2011 (in Chinese). [24] 江 星, 姚晓乐, 王 磊, 等. 碱矿渣加气混凝土制备与性能研究[J]. 硅酸盐通报, 2016, 35(10): 3229-3234+3241. JIANG X, YAO X L, WANG L, et al. Preparation and properties of alkali-activated slag aerated concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(10): 3229-3234+3241 (in Chinese). [25] KADASHEVICH I, SCHNEIDER H J, STOYAN D. Statistical modeling of the geometrical structure of the system of artificial air pores in autoclaved aerated concrete[J]. Cement and Concrete Research, 2005, 35(8): 1495-1502. [26] COLLET F, PRETOT S. Thermal conductivity of hemp concretes: variation with formulation, density and water content[J]. Construction and Building Materials, 2014, 65: 612-619. [27] JERMAN M, KEPPERT M, VYBORNY J, et al. Hygric, thermal and durability properties of autoclaved aerated concrete[J]. Construction and Building Materials, 2013, 41: 352-359. [28] 李 帅, 鲜 广, 赵海波, 等. 蒸压加气混凝土孔结构对其强度的影响及控制[J]. 四川建材, 2018, 44(10): 7-8+10. LI S, XIAN G, ZHAO H B, et al. Influence of the structure of autoclaved aerated concrete on its strength and its control[J]. Sichuan Building Materials, 2018, 44(10): 7-8+10 (in Chinese). [29] WU R D, DAI S B, JIAN S W, et al. Utilization of the circulating fluidized bed combustion ash in autoclaved aerated concrete: effect of superplasticizer[J]. Construction and Building Materials, 2020, 237: 117644. [30] 汪 杰, 鄢朝勇. 粉煤灰与生石灰细度对轻质蒸压加气混凝土料浆及制品性能的影响[J]. 砖瓦, 2015(4): 8-11. WANG J, YAN C Y. Influence of the fineness of fly ash and lime on the performance of lightweight autoclaved aerated concrete[J]. Block-Brick-Tile, 2015(4): 8-11 (in Chinese). [31] 闫加旺, 韦江雄, 庄梓豪, 等. 加气混凝土料浆的流变性能及其与发气和稠化速率的关系[J]. 混凝土, 2009(11): 27-30. YAN J W, WEI J X, ZHUANG Z H, et al. Study on rheological property of AAC paste and relationship between gas-forming velocity and densification velocity[J]. Concrete, 2009(11): 27-30 (in Chinese). [32] 吴任迪. 高掺量固硫粉煤灰制备蒸压加气混凝土的流变及物理力学性能研究[D]. 武汉: 武汉理工大学, 2020. WU R D. Study on rheological and physical-mechanical properties of high circulated fluidized bed combustion fly ash autoclave aerated concrete[D]. Wuhan: Wuhan University of Technology, 2020 (in Chinese). [33] 李 珍. 陶粒蒸压加气混凝土砌块试验研究[D]. 合肥: 安徽建筑大学, 2017. LI Z. Experimental study on autoclaved aerated concrete block with ceramic[D]. Hefei: Anhui Jianzhu University, 2017 (in Chinese). [34] 刘会军. 粉煤灰加气混凝土生产的工艺调整[J]. 墙材革新与建筑节能, 2009(3): 36-38. LIU H J. Process adjustment of fly ash aerated concrete production[J]. Wall Materials Innovation & Energy Saving in Buildings, 2009(3): 36-38 (in Chinese). [35] 吴东云, 何向玲, 成美凤. 粉煤灰加气混凝土砌块砌体力学性能试验研究[J]. 新型建筑材料, 2006, 33(7): 61-63. WU D Y, HE X L, CHENG M F. Experimental study on mechanical properties of fly ash aerated concrete block masonry[J]. New Building Materials, 2006, 33(7): 61-63 (in Chinese). [36] 赵田田, 杨赞中, 王 涵, 等. 固体废弃物制备蒸压加气混凝土的研究进展[J]. 广东化工, 2015, 42(12): 83-84. ZHAO T T, YANG Z Z, WANG H, et al. Research progress in preparation of autoclaved aerated concrete from solid wastes containing SiO2[J]. Guangdong Chemical Industry, 2015, 42(12): 83-84 (in Chinese). [37] 毛若卿, 潘国耀, 高琼英. 沸腾炉渣加气制品[J]. 硅酸盐建筑制品, 1993, 21(3): 43+12. MAO R Q, PAN G Y, GAO Q Y. Boiling slag aerated product[J]. Building Energy Efficiency, 1993, 21(3): 43+12 (in Chinese). [38] 刘素霞, 王雨利, 王卫东. 利用脱硫粉煤灰和炉渣制备蒸压加气混凝土砌块的研究[J]. 粉煤灰, 2012, 24(3): 4-5. LIU S X, WANG Y L, WANG W D. Research on preparation of autoclaved aerated concrete block with desulfurized fly ash and slag[J]. Coal Ash, 2012, 24(3): 4-5 (in Chinese). [39] KURAMA H, TOPÇU İ B, KARAKURT C. Properties of the autoclaved aerated concrete produced from coal bottom ash[J]. Journal of Materials Processing Technology, 2009, 209(2): 767-773. [40] 陈新疆, 刘品德, 顾城名, 等. 利用城市生活垃圾焚烧炉渣制备蒸压加气混凝土板材[J]. 砖瓦, 2021(1): 18-20. CHEN X J, LIU P D, GU C M, et al. Autoclaved aerated concrete slabs prepared from municipal solid waste incineration slag[J]. Brick-Tile, 2021(1): 18-20 (in Chinese). [41] 张 文. 掺生活垃圾焚烧炉渣的碱矿渣加气混凝土砌块的研究与应用[D]. 福州: 福州大学, 2018. ZHANG W. Study and application of alkali-activated slag autoclaved aerated concrete block with municipal solid waste incineration[D]. Fuzhou: Fuzhou University, 2018 (in Chinese). [42] 白宇帆, 徐永福. 垃圾焚烧炉渣物理化学及力学特性研究[J]. 公路, 2021, 66(11): 318-322. BAI Y F, XU Y F. Study on physical, chemical and mechanical properties of waste incineration slag[J]. Highway, 2021, 66(11): 318-322 (in Chinese). [43] 王长龙, 倪 文, 乔春雨, 等. 用石英尾砂制备蒸压加气混凝土[J]. 金属矿山, 2012(12): 140-143. WANG C L, NI W, QIAO C Y, et al. Preparation of autoclaved aerated concrete with silica tails[J]. Metal Mine, 2012(12): 140-143 (in Chinese). [44] PENG Y Z, LIU Y J, ZHAN B H, et al. Preparation of autoclaved aerated concrete by using graphite tailings as an alternative silica source[J]. Construction and Building Materials, 2021, 267: 121792. [45] 朱萌萌. 建筑垃圾再生蒸压加气混凝土的试验研究[D]. 赣州: 江西理工大学, 2015. ZHU M M. Research on construction waste regenerated autoclaved aerated concrete[D]. Ganzhou: Jiangxi University of Science and Technology, 2015 (in Chinese). [46] 田 军. 石英石尾矿蒸压加气混凝土及配套技术研究[D]. 大连: 大连理工大学, 2016. TIAN J. Study on the preparation and related technology of autoclaved aerated concrete by quartz tailing[D]. Dalian: Dalian University of Technology, 2016 (in Chinese). [47] 夏荣华, 朱敏聪, 朱申红, 等. 利用金矿尾矿生产加气混凝土的试验研究[J]. 新型建筑材料, 2008, 35(1): 22-25. XIA R H, ZHU M C, ZHU S H, et al. Experimental study on making aerated concrete by tailings of gold mine[J]. New Building Materials, 2008, 35(1): 22-25 (in Chinese). [48] 童蕊花, 郭倩绮, 刘 辉, 等. 利用锂矿尾砂生产蒸压加气混凝土制品的研究[J]. 砖瓦, 2020(12): 55-57. TONG R H, GUO Q Q, LIU H, et al. Study on production of AAC products from lithium ore tailings[J]. Brick-Tile, 2020(12): 55-57 (in Chinese). [49] 白 魁, 曾兴华. 利用钨尾矿渣制备蒸压加气混凝土砌块研究[J]. 江西建材, 2013(5): 26-28. BAI K, ZENG X H. Study on preparation of autoclaved aerated concrete block with tungsten tailings slag[J]. Jiangxi Building Materials, 2013(5): 26-28 (in Chinese). [50] 陈智华, 秦哲焕. 铅锌尾矿制备加气混凝土的试验研究[J]. 建材世界, 2018, 39(6): 9-12. CHEN Z H, QIN Z H. Experimental research on aerated concrete with lead-zinc tailings[J]. The World of Building Materials, 2018, 39(6): 9-12 (in Chinese). [51] JIANG J, CAI Q, MA B, et al. Effect of ZSM-5 waste dosage on the properties of autoclaved aerated concrete[J]. Construction and Building Materials, 2021, 278: 122114. [52] 毛 奎, 蔡 亮, 吴小文, 等. 几种典型铁尾矿制备加气混凝土性能及水化机理研究[J]. 硅酸盐通报, 2019, 38(12): 3719-3725. MAO K, CAI L, WU X W, et al. Hydration mechanism and properties of aerated concrete prepared by several typical iron tailings[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3719-3725 (in Chinese). [53] 任铮钺, 田 军. 利用当地石英石尾矿制备蒸压加气混凝土[J]. 低温建筑技术, 2016, 38(6): 4-6. REN Z Y, TIAN J. Preparation of autoclaved aerated concrete with local quartz tailings[J]. Low Temperature Architecture Technology, 2016, 38(6): 4-6 (in Chinese). [54] 钱嘉伟, 倪 文, 李德忠, 等. 利用低硅铜尾矿生产加气混凝土的试验研究[J]. 新型建筑材料, 2011, 38(3): 20-24. QIAN J W, NI W, LI D Z, et al. Experimental research on aerated concrete preparation with low-silicon tailings of copper mine[J]. New Building Materials, 2011, 38(3): 20-24 (in Chinese). [55] 张 晔, 段鹏选, 贾宝生, 等. 利用低硅钯铂尾矿生产加气混凝土的试验研究[J]. 建设科技, 2013(5): 94-96. ZHANG Y, DUAN P X, JIA B S, et al. Experimental study on producing aerated concrete with low silicon palladium platinum tailings[J]. Construction Science and Technology, 2013(5): 94-96 (in Chinese). [56] 王建义, 王 尧, 刘恒波. 萤石选矿废渣: 石英尾渣蒸压加气混凝土配方试验研究[J]. 墙材革新与建筑节能, 2018(8): 28-31. WANG J Y, WANG Y, LIU H B. Experimental study on formula of autoclaved aerated concrete from fluorite tailings-quartz tailings[J]. Construction Wall Innovation & Building Energy-Saving, 2018(8): 28-31 (in Chinese). [57] 丁小龙, 刘品德, 陆 洁. 利用陶瓷废料制备蒸压加气混凝土砌块的研究[J]. 砖瓦, 2017(11): 25-28. DING X L, LIU P D, LU J. Study on preparation of autoclaved aerated concrete by ceramic waste[J]. Brick-Tile, 2017(11): 25-28 (in Chinese). [58] 王 勇, 湛 蒙. 电解锰渣制备蒸压加气混凝土研究[J]. 砖瓦, 2017(6): 23-27. WANG Y, ZHAN M. Preparation of autoclaved aerated concrete by adding electrolytic Manganese residue[J]. Block-Brick-Tile, 2017(6): 23-27 (in Chinese). [59] 邵 伟, 苏 雷. 利用陶瓷砖抛光泥制备蒸压加气混凝土砌块的研究[J]. 墙材革新与建筑节能, 2016(1): 42-44. SHAO W, SU L. Study on preparation of autoclaved aerated concrete block with ceramic tile polishing mud[J]. Wall Materials Innovation & Energy Saving in Buildings, 2016(1): 42-44 (in Chinese). [60] 张惠灵, 徐克猛, 陈永亮, 等. 利用建筑垃圾和碱渣制备蒸压加气混凝土[J]. 环境工程学报, 2019, 13(2): 441-448. ZHANG H L, XU K M, CHEN Y L, et al. Preparation of autoclaved aerated concrete with construction waste and alkali residue[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 441-448 (in Chinese). [61] ALIABDO A A, ABD-ELMOATY A E M, HASSAN H H. Utilization of crushed clay brick in cellular concrete production[J]. Alexandria Engineering Journal, 2014, 53(1): 119-130. [62] CAI Q, MA B, JIANG J, et al. Utilization of waste red gypsum in autoclaved aerated concrete preparation[J]. Construction and Building Materials, 2021, 291: 123376. [63] 高连玉, 李庆繁. 蒸压加气混凝土建筑制品生产及应用[M]. 北京: 中国建材工业出版社, 2015. GAO L Y, LI Q F. Production and application of autoclaved aerated concrete building products[M]. Beijing: China Building Materials Industry Press, 2015 (in Chinese). [64] 王瑞燕, 何丽红. 赤泥-粉煤灰加气混凝土技术性能及强度形成机理研究[J]. 混凝土, 2011(12): 45-48. WANG R Y, HE L H. Research on performance and strength formation mechanism of red mud and fly ash aerated concrete[J]. Concrete, 2011(12): 45-48 (in Chinese). [65] 王雨利, 刘素霞, 罗树琼, 等. 利用固体废弃物制备蒸压加气混凝土砌块的研究[J]. 河南理工大学学报(自然科学版), 2012, 31(5): 613-616. WANG Y L, LIU S X, LUO S Q, et al. Research on preparation of autoclaved aerated concrete blockwith solid waste[J]. Journal of Henan Polytechnic University (Natural Science), 2012, 31(5): 613-616 (in Chinese). [66] 韩福强. 电石渣代替部分石灰生产蒸压加气混凝土砌块[D]. 石家庄: 河北科技大学, 2019. HAN F Q. Calcined aerated concrete block by partly replacing lime with calcium carbide slag[D]. Shijiazhuang: Hebei University of Science and Technology, 2019 (in Chinese). [67] 范俊杰, 曹德光, 黄承好, 等. 工艺参数对电石渣型蒸压加气混凝土发气的影响研究[J]. 新型建筑材料, 2010, 37(11): 34-36. FAN J J, CAO D G, HUANG C H, et al. Study on effect of process parameters on aeration of carbide slag-based autoclaved aerated concrete[J]. New Building Materials, 2010, 37(11): 34-36 (in Chinese). [68] 郅栓明, 井谢谢, 王 喆. 电石渣取代石灰制备蒸养加气混凝土研究[J]. 施工技术, 2014, 43(24): 105-107. ZHI S M, JING X X, WANG Z. Research of steam curing aerated concrete by substituting lime for carbide slag[J]. Construction Technology, 2014, 43(24): 105-107 (in Chinese). [69] 张泓泓. 赤泥掺量对粉煤灰蒸压加气混凝土的性能影响与改善研究[D]. 杭州: 浙江大学, 2020. ZHANG H H. Study on the influence and improvement of red mud on the nerformance of fly ash autoclaved aerated concrete[D]. Hangzhou: Zhejiang University, 2020 (in Chinese). [70] PACHIDEH G, GHOLHAKI M. Effect of pozzolanic materials on mechanical properties and water absorption of autoclaved aerated concrete[J]. Journal of Building Engineering, 2019, 26: 100856. [71] EL-DIDAMONY H, AMER A A, MOHAMMED M S, et al. Fabrication and properties of autoclaved aerated concrete containing agriculture and industrial solid wastes[J]. Journal of Building Engineering, 2019, 22: 528-538. [72] IOANNOU I, HAMILTON A, HALL C. Capillary absorption of water and n-decane by autoclaved aerated concrete[J]. Cement and Concrete Research, 2008, 38(6): 766-771. [73] CABRILLAC R, FIORIO B, BEAUCOUR A L, et al. Experimental study of the mechanical anisotropy of aerated concretes and of the adjustment parameters of the introduced porosity[J]. Construction and Building Materials, 2006, 20(5): 286-295. [74] THONGTHA A, MANEEWAN S, PUNLEK C, et al. Investigation of the compressive strength, time lags and decrement factors of AAC-lightweight concrete containing sugar sediment waste[J]. Energy and Buildings, 2014, 84: 516-525. [75] SHEN H T, FORSSBERG E. An overview of recovery of metals from slags[J]. Waste Management, 2003, 23(10): 933-949. [76] 董泓江. 铝灰-粉煤灰免蒸压加气混凝土物理力学性能及抗冻性能研究[D]. 成都: 成都理工大学, 2019. DONG H J. Study on physical mechanics and freezing resistance of aluminum ash-fly ash non-autoclaved aerated concrete[D]. Chengdu: Chengdu University of Technology, 2019 (in Chinese). [77] 李宝玲. 生活垃圾焚烧炉渣建材资源化研究[D]. 烟台: 烟台大学, 2014. LI B L. Study on utilization of MSWI bottom ash in building materials[D]. Yantai: Yantai University, 2014 (in Chinese). |
[1] | 唐佩, 蒋事成, 邓腾飞, 陈伟. 固废基自发泡烧胀陶粒设计与性能研究[J]. 硅酸盐通报, 2023, 42(4): 1384-1392. |
[2] | 黄利祥, 刘泽, 原航, 王栋民, 危鹏, 姜宏健. 赤泥-石膏复合激发蒸压加气混凝土的制备与性能研究[J]. 硅酸盐通报, 2023, 42(4): 1393-1399. |
[3] | 赵珂萍, 李晓玉, 李瑞红, 李浩然, 杨天佐, 犹家进, 彭康. 固废源CaO基CO2捕集材料的制备与捕集性能研究进展[J]. 硅酸盐通报, 2023, 42(2): 520-530. |
[4] | 张日红, 明维, 万文豪, 刘云鹏. 高强粉煤灰-渣土人造骨料的制备与微结构表征[J]. 硅酸盐通报, 2022, 41(8): 2819-2827. |
[5] | 周永祥, 刘倩, 王祖琦, 郝彤, 冷发光. 流态固化土用无熟料胶凝材料的性能研究[J]. 硅酸盐通报, 2022, 41(10): 3548-3555. |
[6] | 郭兵兵, 贾雪梅, 张恒基, 刘力源. 固废填料对改性沥青老化过程中的疲劳特性影响研究[J]. 硅酸盐通报, 2021, 40(8): 2822-2830. |
[7] | 郝惠兰;田玉明;秦梅;郝建英;王凯悦;力国民. 烧结温度对添加镁渣制备陶粒支撑剂性能的影响[J]. 硅酸盐通报, 2019, 38(2): 367-370. |
[8] | 毛奎;蔡亮;吴小文;赵海卿;闵鑫;黄朝晖;房明浩;刘艳改. 几种典型铁尾矿制备加气混凝土性能及水化机理研究[J]. 硅酸盐通报, 2019, 38(12): 3719-372. |
[9] | 王晓丽;李秋义;陈帅超;岳公冰. 工业固体废弃物在新型建材领域中的应用研究与展望[J]. 硅酸盐通报, 2019, 38(11): 3456-346. |
[10] | 王海波;孙青竹. 利用工业固体废弃物制备微晶泡沫玻璃的研究现状及展望[J]. 硅酸盐通报, 2017, 36(11): 3697-3702. |
[11] | 王皓;马志斌;廖洪强;程芳琴. 高温下多种工业固体废弃物复配体系的熔融特性研究[J]. 硅酸盐通报, 2017, 36(1): 296-300. |
[12] | 朱宝贵;张长森;毕飞;吴其胜;诸华军. 工业固体废弃物制备混凝土膨胀剂的研究进展[J]. 硅酸盐通报, 2016, 35(12): 4044-4047. |
[13] | 刘敏;杨赞中;丁琪;吴奇阳;王永在;周薛霞. 花岗岩渣粉制备蒸压加气混凝土的试验研究[J]. 硅酸盐通报, 2016, 35(12): 4154-4160. |
[14] | 巨鹏瑞;郭占成. 钢渣制备多孔吸声材料的研究[J]. 硅酸盐通报, 2015, 34(10): 2960-2967. |
[15] | 王昕;刘晨;颜碧兰;郑旭;张江;王焕忠. 国内外水泥窑协同处置城市固体废弃物现状与应用[J]. 硅酸盐通报, 2014, 33(8): 1989-1995. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||