[1] YAN Y L, BORHANI T N, SUBRAVETI S G, et al. Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS): a state-of-the-art review[J]. Energy & Environmental Science, 2021, 14(12): 6122-6157. [2] 周绪忠, 李水娥, 仵 恒, 等. 化学法吸收燃煤烟气中CO2的研究[J]. 有色金属(冶炼部分), 2015(10): 75-78. ZHOU X Z, LI S E, WU H, et al. Study on CO2 absorption from coal-fired flue gas by chemical method[J]. Nonferrous Metals (Extractive Metallurgy), 2015(10): 75-78 (in Chinese). [3] 李清方, 陆诗建, 张 建, 等. 搅拌法对TEA溶液吸收和解吸CO2的实验研究[J]. 陕西科技大学学报(自然科学版), 2009, 27(4): 48-51. LI Q F, LU S J, ZHANG J, et al. Experiment research of TEA solutions absorb and desorb the carbon dioxide based on mixing round method[J]. Journal of Shaanxi University of Science & Technology (Natural Science Edition), 2009, 27(4): 48-51 (in Chinese). [4] 范文琦, 潘 登, 黄 亮, 等. 工业固废和廉价矿石制备高循环稳定性高温CO2捕集材料的研究进展[J]. 材料导报, 2021, 35(17): 17090-17102. FAN W Q, PAN D, HUANG L, et al. Research progress in the preparation of high cycling stability and high temperature CO2capture materials from industrial solid waste and cheap ore[J]. Materials Reports, 2021, 35(17): 17090-17102 (in Chinese). [5] 江 涛, 魏小娟, 王胜平, 等. 固体吸附剂捕集CO2的研究进展[J]. 洁净煤技术, 2022, 28(1): 42-57. JIANG T, WEI X J, WANG S P, et al. Research progress on solid sorbents for CO2 capture[J]. Clean Coal Technology, 2022, 28(1): 42-57 (in Chinese). [6] HU Y C, QU M Y, LI H L, et al. Porous extruded-spheronized Li4SiO4 pellets for cyclic CO2 capture[J]. Fuel, 2019, 236: 1043-1049. [7] HAAF M, HILZ J, PETERS J, et al. Operation of a 1 MWth calcium looping pilot plant firing waste-derived fuels in the calciner[J]. Powder Technology, 2020, 372: 267-274. [8] MA X T, LI Y J, ZHANG C X, et al. Development of Mn/Mg-copromoted carbide slag for efficient CO2 capture under realistic calcium looping conditions[J]. Process Safety and Environmental Protection, 2020, 141: 380-389. [9] GONG X Z, ZHANG T, ZHANG J Q, et al. Recycling and utilization of calcium carbide slag-current status and new opportunities[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112133. [10] TONG X L, LIU W Q, YANG Y D, et al. A semi-industrial preparation procedure of CaO-based pellets with high CO2 uptake performance[J]. Fuel Processing Technology, 2019, 193: 149-158. [11] ZHAO H T, ZHANG M. Research progress of CaO-based absorbents prepared from different calcium sources[J]. IOP Conference Series: Earth and Environmental Science, 2020, 474: 052058. [12] 晁 阳, 林志伟, 孙 吉, 等. 钙基吸附剂循环捕获CO2反应动力学研究[J]. 能源研究与管理, 2018(1): 19-23. CHAO Y, LIN Z W, SUN J, et al. Study on the cyclic kinetics of CO2 capture by calcium based adsorbents[J]. Energy Research and Management, 2018(1): 19-23 (in Chinese). [13] 陈 健, 段伦博, 卞若愚, 等. 钙基中空微球的碳酸化性能及其动力学分析[J]. 东南大学学报(自然科学版), 2019, 49(4): 757-763. CHEN J, DUAN L B, BIAN R Y, et al. Analysis of carbonation and kinetic performance of CaO hollow microspheres[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(4): 757-763 (in Chinese). [14] WANG N N, FENG Y C, GUO X. Atomistic mechanisms study of the carbonation reaction of CaO for high-temperature CO2 capture[J]. Applied Surface Science, 2020, 532: 147425. [15] 闫博威. H2O对钙基吸收剂循环捕集CO2性能影响的研究进展[J]. 辽宁化工, 2021, 50(8): 1162-1165. YAN B W. Effect of H2O on performance of calcium oxide-based sorbents for cyclic CO2 capture[J]. Liaoning Chemical Industry, 2021, 50(8): 1162-1165 (in Chinese). [16] SUN J, GUO Y F, YANG Y D, et al. Mode investigation of CO2 sorption enhancement for titanium dioxide-decorated CaO-based pellets[J]. Fuel, 2019, 256: 116009. [17] LEE C H, CHOI S W, YOON H J, et al. Na2CO3-doped CaO-based high-temperature CO2 sorbent and its sorption kinetics[J]. Chemical Engineering Journal, 2018, 352: 103-109. [18] YANG J, MA L P, LIU H P, et al. Thermodynamics and kinetics analysis of Ca-looping for CO2 capture: application of carbide slag[J]. Fuel, 2019, 242: 1-11. [19] LIU K, ZHAO B S, WU Y, et al. Bubbling synthesis and high-temperature CO2 adsorption performance of CaO-based adsorbents from carbide slag[J]. Fuel, 2020, 269: 117481. [20] ZHANG W, LI Y J, HE Z R, et al. CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions[J]. Applied Energy, 2017, 206: 869-878. [21] HE Z R, LI Y J, ZHANG W, et al. Effect of re-carbonation on CO2 capture by carbide slag and energy consumption in the calciner[J]. Energy Conversion and Management, 2017, 148: 1468-1477. [22] HU Y P, WU S M, LI Y J, et al. H2S removal performance of Ca3Al2O6-stabilized carbide slag from CO2 capture cycles using calcium looping[J]. Fuel Processing Technology, 2021, 218: 106845. [23] SUN J, SUN Y, YANG Y D, et al. Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature[J]. Applied Energy, 2019, 242: 919-930. [24] MA X T, LI Y J, DUAN L B, et al. CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions[J]. Applied Energy, 2018, 225: 402-412. [25] TIAN S C, JIANG J G, YAN F, et al. Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry[J]. Green Chemistry, 2016, 18(14): 4022-4031. [26] TIAN S C, JIANG J G, YAN F, et al. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag[J]. Environmental Science & Technology, 2015, 49(12): 7464-7472. [27] SUN R Y, XIAO R, YE J M. Kinetic analysis about the CO2 capture capacity of lime mud from paper mill in calcium looping process[J]. Energy Science & Engineering, 2020, 8(11): 4014-4024. [28] ZHANG Y Q, HE L, MA A H, et al. CaO-based sorbent derived from lime mud and bauxite tailings for cyclic CO2 capture[J]. Environmental Science and Pollution Research, 2018, 25(28): 28015-28024. [29] MA A H, JIA Q M, SU H Y, et al. Study of CO2 cyclic absorption stability of CaO-based sorbents derived from lime mud purified by sucrose method[J]. Environmental Science and Pollution Research, 2016, 23(3): 2530-2536. [30] 张亚朋, 崔龙鹏, 刘艳芳, 等. 3种典型工业固废的CO2矿化封存性能[J]. 环境工程学报, 2021, 15(7): 2344-2355. ZHANG Y P, CUI L P, LIU Y F, et al. Comparison of three typical industrial solid wastes on the performance of CO2 mineralization and sequestration[J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2344-2355 (in Chinese). [31] YASIPOURTEHRANI S, TIAN S C, STREZOV V, et al. Development of robust CaO-based sorbents from blast furnace slag for calcium looping CO2 capture[J]. Chemical Engineering Journal, 2020, 387: 124140. [32] SALAUDEEN S A, TASNIM S H, HEIDARI M, et al. Eggshell as a potential CO2 sorbent in the calcium looping gasification of biomass[J]. Waste Management, 2018, 80: 274-284. [33] NAWAR A, ALI M, KHOJA A H, et al. Enhanced CO2 capture using organic acid structure modified waste eggshell derived CaO sorbent[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104871. [34] HSIEH S L, LI F Y, LIN P Y, et al. CaO recovered from eggshell waste as a potential adsorbent for greenhouse gas CO2[J]. Journal of Environmental Management, 2021, 297: 113430. [35] HE S C, HU Y C, HU T D, et al. Investigation of CaO-based sorbents derived from eggshells and red mud for CO2 capture[J]. Journal of Alloys and Compounds, 2017, 701: 828-833. [36] MOHAMED M, YUSUP S, QUITAIN A T, et al. Utilization of rice husk to enhance calcium oxide-based sorbent prepared from waste cockle shells for cyclic CO2 capture in high-temperature condition[J]. Environmental Science and Pollution Research, 2019, 26(33): 33882-33896. [37] NAWAR A, GHAEDI H, ALI M, et al. Recycling waste-derived marble powder for CO2 capture[J]. Process Safety and Environmental Protection, 2019, 132: 214-225. [38] CAI J J, WANG S Z, XIAO Z Z. A study on the CO2 capture and attrition performance of construction and demolition waste[J]. Fuel, 2018, 222: 232-242. [39] MOHAMED M, YUSUP S, BUSTAM M A, et al. Effect of coal bottom ash and binder addition into Cao-based sorbent on CO2 capture performance[J]. Chemical Engineering Transactions, 2017, 56: 325-330. [40] YAN F, JIANG J G, LI K M, et al. Cyclic performance of waste-derived SiO2 stabilized, CaO-based sorbents for fast CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 7004-7012. [41] CHI C Y, LI Y J, MA X T, et al. CO2 capture performance of CaO modified with by-product of biodiesel at calcium looping conditions[J]. Chemical Engineering Journal, 2017, 326: 378-388. [42] SU C L, DUAN L B, DONAT F, et al. From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture[J]. Applied Energy, 2018, 210: 117-126. [43] ZHANG C Y, YU B Y, CHEN J M, et al. Green transition pathways for cement industry in China[J]. Resources, Conservation and Recycling, 2021, 166: 105355. [44] ORTIZ C, VALVERDE J M, CHACARTEGUI R. Energy consumption for CO2 capture by means of the calcium looping process: a comparative analysis using limestone, dolomite, and steel slag[J]. Energy Technology, 2016, 4(10): 1317-1327. [45] BRUNETTI A, SCURA F, BARBIERI G, et al. Membrane technologies for CO2 separation[J]. Journal of Membrane Science, 2010, 359(1/2): 115-125. [46] ZHANG T Y, CHU G R, LYU J L, et al. CO2 mineralization of carbide slag for the production of light calcium carbonates[J]. Chinese Journal of Chemical Engineering, 2022, 43: 86-98. [47] ZHANG C X, LI Y J, YANG L G, et al. Analysis on H2 production process integrated CaO/Ca(OH)2 heat storage and sorption enhanced staged gasification using calcium looping[J]. Energy Conversion and Management, 2022, 253: 115169. [48] 谌 缘, 杨海平, 邹 俊, 等. 钙基废弃物对生物质吸附增强式气化制氢特性的影响研究[J]. 燃料化学学报, 2022, 51: 1-6. CHEN Y, YANG H P, ZOU J, et al. Study of calcium-based waste on adsorption enhanced biomass gasification for hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2022, 51: 1-6 (in Chinese). |