硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (2): 509-519.
所属专题: 资源综合利用
王昕, 张金山, 汪澜
收稿日期:
2022-09-28
修订日期:
2022-11-25
出版日期:
2023-02-15
发布日期:
2023-03-07
作者简介:
王 昕(1972—),男,博士,教授级高级工程师。主要从事材料化学方面的研究。E-mail:cbmawx@163.com
基金资助:
WANG Xin, ZHANG Jinshan, WANG Lan
Received:
2022-09-28
Revised:
2022-11-25
Online:
2023-02-15
Published:
2023-03-07
摘要: 氮氧化物是大气主要污染物之一,选择性催化还原(SCR)是国内外工业锅炉(窑炉)烟气脱硝的主要技术途径。脱硝催化剂是SCR技术的核心,近几十年来为人们所关注和广泛研究。金属氧化物催化剂材料来源广泛,制备简单,脱硝效率稳定,在工业锅炉(窑炉)烟气脱硝中具有广阔的应用前景,因而成为人们研究关注的重点。本文基于SCR烟气脱硝理论现状,归纳了金属氧化物催化剂优化设计的关键与重要基础,同时,梳理了目前备受研究关注的钒基、锰基、铈基、铁基等四种典型金属氧化物催化剂的研究进展,系统介绍了不同氧化物催化剂的脱硝机理、本质特征、元素改良、结构和形貌设计,以及存在的问题等,并展望了今后金属氧化物催化剂研究的发展趋势,为今后工业锅炉(窑炉)烟气高效脱硝催化剂的研发提供参考借鉴。
中图分类号:
王昕, 张金山, 汪澜. SCR脱硝金属氧化物催化剂研究进展[J]. 硅酸盐通报, 2023, 42(2): 509-519.
WANG Xin, ZHANG Jinshan, WANG Lan. Research Progress on SCR DeNOx Metallic Oxide Catalysts[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(2): 509-519.
[1] HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521): 218-222. [2] 苏士焜, 宗保宁, 荣峻峰. 金属氧化物催化剂用于NO催化氧化的研究进展[J]. 化工环保, 2022, 42(3): 249-254. SU S K, ZONG B N, RONG J F. Research progress of metal oxide catalysts for catalytic oxidation of NO[J]. Environmental Protection of Chemical Industry, 2022, 42(3): 249-254 (in Chinese). [3] 王金玉. 掺杂Ce对Mn基脱硝催化剂抗水抗硫性的实验研究和模拟分析[D]. 青岛: 青岛大学, 2020. WANG J Y. Experimental study and simulation analysis of water resistance and sulfur resistance of Mn-based denitration catalyst doped with Ce[D]. Qingdao: Qingdao University, 2020 (in Chinese). [4] HAN L P, CAI S, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical Reviews, 2019, 119: 10916-10976. [5] CAO L, CHEN L, WU X D, et al. TRA and DRIFTS studies of the fast SCR reaction over CeO2/TiO2 catalyst at low temperatures[J]. Applied Catalysis A: General, 2018, 557: 46-54. [6] YUAN H Y, CHEN J F, WANG H F, et al. Activity trend for low-concentration NO oxidation at room temperature on rutile-type metal oxides[J]. ACS Catalysis, 2018, 8(11): 10864-10870. [7] GILLOT S, TRICOT G, VEZIN H, et al. Development of stable and efficient CeVO4 systems for the selective reduction of NOx by ammonia: structure-activity relationship[J]. Applied Catalysis B: Environmental, 2017, 218: 338-348. [8] 张洪亮, 龙红明, 李家新, 等. 铁基催化剂用于氨选择性催化还原氮氧化物研究进展[J]. 无机化学学报, 2019, 35(5): 753-768. ZHANG H L, LONG H M, LI J X, et al. Research progress in iron-based catalysts for the selective catalytic reduction of NOx by NH3[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(5): 753-768 (in Chinese). [9] QI G, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 2004, 51(2): 93-106. [10] CAO F, XIANG J, SU S, et al. Ag modified Mn-Ce/γ-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature[J]. Fuel Processing Technology, 2015, 135: 66-72. [11] 陈 靓. 基于酸性位强化的铈基催化剂结构调控及NH3-SCR反应机制[D]. 杭州: 浙江大学, 2020. CHEN L. Design of acid-site strengthened cerium-based catalyst and its NH3-SCR mechanism investigation[D]. Hangzhou: Zhejiang University, 2020 (in Chinese). [12] DAMMA D, ETTIREDDY P, REDDY B, et al. A review of low temperature NH3-SCR for removal of NOx[J]. Catalysts, 2019, 9(4): 349. [13] 云军阁, 胡晓玫, 赵 成, 等. 中低温NH3-SCR催化剂抗中毒研究进展[J]. 环境科学与技术, 2021, 44(1): 141-150. YUN J G, HU X M, ZHAO C, et al. Research progress on anti-poisoning of NH3-SCR catalysts at medium and low temperature[J]. Environmental Science & Technology, 2021, 44(1): 141-150 (in Chinese). [14] LIU H Z, YOU C F, WANG H M. Time-resolved in situ IR and DFT study: NH3 adsorption and redox cycle of acid site on vanadium-based catalysts for NO abatement via selective catalytic reduction[J]. Chemical Engineering Journal, 2020, 382: 122756. [15] KE Y, HUANG W J, LI S C, et al. Surface acidity enhancement of CeO2 catalysts via modification with a heteropoly acid for the selective catalytic reduction of NO with ammonia[J]. Catalysis Science & Technology, 2019, 9(20): 5774-5785. [16] 马赫遥, 周曙光, 王晓祥, 等. 不同的WO3掺杂量对CeO2的NH3-SCR催化性能影响研究[J]. 高校化学工程学报, 2022, 36(2): 242-248. MA H Y, ZHOU S G, WANG X X, et al. Effects of WO3 doping amounts of CeO2 on NH3-SCR catalytic performance[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(2): 242-248 (in Chinese). [17] TOPSOE N Y, DUMESIC J A, TOPSOE H. Vanadia-titania catalysts for selective catalytic reduction of nitric-oxide by ammonia[J]. Journal of Catalysis, 1995, 151(1): 241-252. [18] DONG G J, BAI Y, ZHANG Y F, et al. Effect of the V4+(3+)/V5+ ratio on the denitration activity for V2O5-WO3/TiO2 catalysts[J]. New Journal of Chemistry, 2015, 39(5): 3588-3596. [19] 苏 茂, 刘少光, 戴炎彬, 等. 稀土氧化物对钒钛类催化剂性能的影响[C]//2011中国功能材料科技与产业高层论坛论文集(第一卷). 重庆, 2011: 372-376. SU M, LIU S G, DAI Y B, et al. Effect of rare earth oxides on the properties of vanadium and titanium catalysts[C]//2011 China Functional Materials Technology and Industry High-level Forum proceedings (Volume 1). Chongqing, 2011: 372-376 (in Chinese). [20] 胡建飞. 钛基SCR催化剂及其脱硝性能研究[D]. 太原: 太原理工大学, 2011. HU J F. Research on denitrification performance of titanium-based SCR catalysts[D]. Taiyuan: Taiyuan University of Technology, 2011 (in Chinese). [21] MA Z R, WU X D, FENG Y, et al. Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5-WO3/TiO2 catalyst[J]. Progress in Natural Science: Materials International, 2015, 25(4): 342-352. [22] CHEN M Y, ZHAO M M, TANG F S, et al. Effect of Ce doping into V2O5-WO3/TiO2 catalysts on the selective catalytic reduction of NOx by NH3[J]. Journal of Rare Earths, 2017, 35(12): 1206-1215. [23] 裴鑫琦. 低温钒钛系SCR脱硝催化剂改性研究[D]. 北京: 华北电力大学(北京), 2021. PEI X Q. Research on modification of low temperature V2O5/TiO2 SCR catalysts[D]. Beijing: North China Electric Power University, 2021 (in Chinese). [24] HE Y Y, FORD M E, ZHU M H, et al. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts[J]. Applied Catalysis B: Environmental, 2016, 193: 141-150. [25] 乔 明, 张继义, 宗路遥, 等. 催化脱硝技术研究进展——催化剂的种类、制备方法及催化活性[J]. 分子催化, 2020, 34(2): 165-181. QIAO M, ZHANG J Y, ZONG L Y, et al. Research progress in catalytic denitrification performance: the catalyst type, preparation methods and activity[J]. Journal of Molecular Catalysis (China), 2020, 34(2): 165-181 (in Chinese). [26] LI W Z, GAO F, LI Y, et al. Nanocrystalline anatase titania-supported vanadia catalysts: facet-dependent structure of vanadia[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15094-15102. [27] 郭梓阳, 霍旺晨, 张育新, 等. 锰基低温NH3-SCR脱硝催化剂的研究概述[J]. 材料导报, 2021, 35(13): 13085-13099. GUO Z Y, HUO W C, ZHANG Y X, et al. A review of Mn-based low temperature NH3-SCR denitration catalyst[J]. Materials Reports, 2021, 35(13): 13085-13099 (in Chinese). [28] 李 娜, 陈泽东, 王晶晶, 等. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 54-63. LI N, CHEN Z D, WANG J J, et al. Research progress of cerium oxide-based catalysts for NH3-SCR at low temperature[J]. Materials Reports, 2022, 36(8): 54-63 (in Chinese). [29] ZHANG S B, ZHAO Y C, YANG J P, et al. Simultaneous NO and mercury removal over MnOx/TiO2 catalyst in different atmospheres[J]. Fuel Processing Technology, 2017, 166: 282-290. [30] YAO X J, KONG T T, YU S H, et al. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature[J]. Applied Surface Science, 2017, 402: 208-217. [31] 张 哲. Mn-Ce系列催化剂的性能、表征及应用研究[D]. 武汉: 武汉理工大学, 2016. ZHANG Z. Study on the properties, characterization and application of Mn-Ce series catalysts[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese). [32] LI S H, HUANG B C, YU C L. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO[J]. Catalysis Communications, 2017, 98: 47-51. [33] QI G, YANG R T. Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. The Journal of Physical Chemistry B, 2004, 108(40): 15738-15747. [34] PEÑA D A, UPHADE B S, REDDY E P, et al. Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts[J]. The Journal of Physical Chemistry B, 2004, 108(28): 9927-9936. [35] CAO F, SU S, XIANG J, et al. The activity and mechanism study of Fe-Mn-Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel, 2015, 139: 232-239. [36] 陈利强. 基于低温氨选择性催化还原NO的锰基催化剂制备及性能[D]. 哈尔滨: 黑龙江大学, 2017. CHEN L Q. Preparation of Manganese based catalyst for low-temperature SCR of NO and its performance[D]. Harbin: Helongjiang University, 2017 (in Chinese). [37] HU H, ZHA K W, LI H R, et al. In situ DRIFTs investigation of the reaction mechanism over MnOx-MOy/Ce0. 75Zr0. 25O2 (M=Fe, Co, Ni, Cu) for the selective catalytic reduction of NOx with NH3[J]. Applied Surface Science, 2016, 387: 921-928. [38] GAN L N, LI K Z, YANG W N, et al. Core-shell-like structured α-MnO2@CeO2 catalyst for selective catalytic reduction of NO: promoted activity and SO2 tolerance[J]. Chemical Engineering Journal, 2020, 391: 123473. [39] HUANG X S, DONG F, ZHANG G D, et al. A strategy for constructing highly efficient yolk-shell[email protected]@TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal, 2021, 419: 129572. [40] SHI Y R, YI H H, GAO F Y, et al. Facile synthesis of hollow nanotube MnCoOx catalyst with superior resistance to SO2 and alkali metal poisons for NH3-SCR removal of NOx[J]. Separation and Purification Technology, 2021, 265: 118517. [41] YU S H, JIANG N X, ZOU W X, et al. A general and inherent strategy to improve the water tolerance of low temperature NH3-SCR catalysts via trace SiO2 deposition[J]. Catalysis Communications, 2016, 84: 75-79. [42] ZHANG Q L, LIU X, NING P, et al. Enhanced performance in NOx reduction by NH3 over a mesoporous Ce-Ti-MoOx catalyst stabilized by a carbon template[J]. Catalysis Science & Technology, 2015, 5(4): 2260-2269. [43] QI G, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 2004, 51(2): 93-106. [44] CHITPAKDEE C, JUNKAEW A, MAITARAD P, et al. Understanding the role of Ru dopant on selective catalytic reduction of NO with NH3 over Ru-doped CeO2 catalyst[J]. Chemical Engineering Journal, 2019, 369: 124-133. [45] GAO F Y, TANG X L, YI H H, et al. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J]. Chemical Engineering Journal, 2017, 317: 20-31. [46] LIU Z M, ZHU J Z, LI J H, et al. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14500-14508. [47] 王美鑫. MnCeTiOx低温NH3-SCR脱硝催化剂改性及性能研究[D]. 太原: 太原理工大学, 2020. WANG M X. Research on modification and performance of MnCeTiOx for selective catalytic reduction of NOx with NH3 at low temperature[D]. Taiyuan: Taiyuan University of Technology, 2020 (in Chinese). [48] SHEN B X, LIU T, ZHAO N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences, 2010, 22(9): 1447-1454. [49] 朱少文, 沈伯雄, 池桂龙, 等. 铁钴共掺杂的Mn-Ce/TiO2催化剂低温SCR脱硝[J]. 环境工程学报, 2017, 11(6): 3633-3639. ZHU S W, SHEN B X, CHI G L, et al. Low-temperature SCR of NO over Fe and Co co-doped Mn-Ce/TiO2 catalyst[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3633-3639 (in Chinese). [50] 吴彦霞, 梁海龙, 陈 鑫, 等. Ni, Co掺杂对Mn-Ce/TiO2催化剂脱硝活性的影响[J]. 化工环保, 2016, 36(3): 321-325. WU Y X, LIANG H L, CHEN X, et al. Effects of doped Ni, Co on denitrification activity of Mn-Ce/TiO2 catalyst[J]. Environmental Protection of Chemical Industry, 2016, 36(3): 321-325 (in Chinese). [51] LIU H, FAN Z X, SUN C Z, et al. Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3[J]. Applied Catalysis B: Environmental, 2019, 244: 671-683. [52] MA Z R, WENG D, WU X D, et al. Effects of WOx modification on the activity, adsorption and redox properties of CeO2 catalyst for NOx reduction with ammonia[J]. Journal of Environmental Sciences, 2012, 24(7): 1305-1316. [53] 马赫遥, 周曙光, 王晓祥, 等. 不同的WO3掺杂量对CeO2的NH3-SCR催化性能影响研究[J]. 高校化学工程学报, 2022, 36(2): 242-248. MA H Y, ZHOU S G, WANG X X, et al. Effects of WO3 doping amounts of CeO2 on NH3-SCR catalytic performance[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(2): 242-248 (in Chinese). [54] ZHANG L, ZHANG D S, ZHANG J P, et al. Design of meso-TiO2@MnOx-CeOx/CNTs with a core-shell structure as DeNOx catalysts: promotion of activity, stability and SO2-tolerance[J]. Nanoscale, 2013, 5(20): 9821-9829. [55] HUANG B J, YU D Q, SHENG Z Y, et al. Novel CeO2@TiO2 core-shell nanostructure catalyst for selective catalytic reduction of NOx with NH3[J]. Journal of Environmental Sciences, 2017, 55: 129-136. [56] 苏士焜, 宗保宁, 荣峻峰. 金属氧化物催化剂用于NO催化氧化的研究进展[J]. 化工环保, 2022, 42(3): 249-254. SU S K, ZONG B N, RONG J F. Research progress of metal oxide catalysts for catalytic oxidation of NO[J]. Environmental Protection of Chemical Industry, 2022, 42(3): 249-254 (in Chinese). [57] 任冬冬. 中低温铁基SCR脱硝催化剂反应机理研究[D]. 南京: 东南大学, 2020. REN D D. Study on reaction mechanism of iron based SCR de-NOx catalyst at medium and low temperature[D]. Nanjing: Southeast University, 2020 (in Chinese). [58] 查贤斌. 铁矿石催化剂SCR烟气低温脱硝及组分影响分析[D]. 南京: 东南大学, 2014. ZHA X B. Low-temperature denitration of iron ore SCR flue gas and its component influence analysis[D]. Nanjing: Southeast University, 2014 (in Chinese). [59] 王继封. Fe2O3-WO3催化剂NH3-SCR反应机理及低温活性调控[D]. 昆明: 昆明理工大学, 2020. WANG J F. The research of Fe2O3-WO3 catalyst on the NH3-SCR reaction mechanism and low-temperature activity regulation[D]. Kunming: Kunming University of Science and Technology, 2020 (in Chinese). [60] SUN J F, LU Y Y, ZHANG L, et al. Comparative study of different doped metal cations on the reduction, acidity, and activity of Fe9M1Ox (M=Ti4+, Ce4+/3+, Al3+) catalysts for NH3-SCR reaction[J]. Industrial & Engineering Chemistry Research, 2017, 56(42): 12101-12110. [61] LIU F D, HE H, DING Y, et al. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Applied Catalysis B: Environmental, 2009, 93(1/2): 194-204. [62] FANG N J, GUO J X, SHU S, et al. Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR[J]. Chemical Engineering Journal, 2017, 325: 114-123. [63] LI Y L, LIU W M, YAN R, et al. Hierarchical three-dimensionally ordered macroporous Fe-V binary metal oxide catalyst for low temperature selective catalytic reduction of NOx from marine diesel engine exhaust[J]. Applied Catalysis B: Environmental, 2020, 268: 118455. [64] ZONG L Y, ZHANG G D, ZHAO J H, et al. Morphology-controlled synthesis of 3D flower-like TiO2 and the superior performance for selective catalytic reduction of NOx with NH3[J]. Chemical Engineering Journal, 2018, 343: 500-511. [65] CHEN S N, YAN Q H, ZHANG C, et al. A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR[J]. Catalysis Today, 2019, 327: 81-89. |
[1] | 王洪镇, 沈昊, 曹万智, 甘季中, 李文琦, 王海瑞, 褚文斌. 硼酸对硫铝酸盐基复合胶凝材料性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1166-1173. |
[2] | 汪凯, 燕远岭, 赵哲, 张杯, 李致坤. 界面过渡区与骨料特征对混凝土强度及变形影响的数值模拟研究[J]. 硅酸盐通报, 2023, 42(4): 1298-1308. |
[3] | 李秋, 朱翔, 耿海宁, 李宗刚, 马浩森, 陈伟. 地聚合物基多相陶瓷高放废液固化体固化机理与浸出性能[J]. 硅酸盐通报, 2023, 42(4): 1437-1447. |
[4] | 王恭一, 赵惠忠, 黄日清, 张寒, 余俊, 李学臣. AOD炉渣对镁钙质耐火材料的侵蚀机理[J]. 硅酸盐通报, 2023, 42(4): 1496-1505. |
[5] | 李永春, 王亚丽, 王剑锋, 崔素萍, 黄炳银, 武鑫江. 燃煤催化剂的发展及研究现状[J]. 硅酸盐通报, 2023, 42(2): 531-540. |
[6] | 许星, 张金才, 王宝凤, 郭彦霞, 程芳琴. 玄武岩纤维表面改性的研究进展[J]. 硅酸盐通报, 2023, 42(2): 575-586. |
[7] | 罗国夫, 陈开圣, 骆弟普. 磷石膏稳定红黏土的压缩特性及微观机理[J]. 硅酸盐通报, 2023, 42(2): 644-656. |
[8] | 胡文静, 班锦锦, 谢顺利, 王瑞智, 肖建军, 雷红红. 氧化锰基电催化材料的设计合成及其铝空气电池应用[J]. 硅酸盐通报, 2023, 42(2): 728-735. |
[9] | 关虓, 龙行, 丁莎, 张鹏鑫. 冻融作用下活化煤矸石粉混凝土损伤劣化规律[J]. 硅酸盐通报, 2023, 42(1): 144-150. |
[10] | 陈璞, 欧晓霞, 赵可, 杨晓宇. In2S3/g-C3N4复合光催化剂的制备及其光催化降解四环素[J]. 硅酸盐通报, 2023, 42(1): 310-318. |
[11] | 周婷, 余俊, 黄学忠, 赵惠忠, 谈利强, 刘丛平. AOD炉渣对MgO-C砖的侵蚀机理研究[J]. 硅酸盐通报, 2023, 42(1): 338-344. |
[12] | 刘恩铭, 林明强, 谢群. 再生粗骨料混凝土抗冻性能研究进展[J]. 硅酸盐通报, 2022, 41(9): 2963-2978. |
[13] | 张杰, 刘永佳, 侯静文, 李妍. 基于热重-质谱联用技术测定EVA的方法探究[J]. 硅酸盐通报, 2022, 41(9): 3115-3120. |
[14] | 吴泳霖, 张伟, 奠波, 陈建军. 磷石膏热分解研究现状[J]. 硅酸盐通报, 2022, 41(9): 3129-3137. |
[15] | 周兰兰, 梅军鹏, 李海南, 牛寅龙, 李雨浓, 徐智东, 王智鑫, 何香香. 蒸汽养护条件下甲酸钙/纳米C-S-H复合对粉煤灰-水泥体系早期水化的影响[J]. 硅酸盐通报, 2022, 41(9): 3154-3161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||