[1] 康 鑫,张利新,邓俊杰,等.Cr2O3微粉加入量对Al2O3-Cr2O3质耐火材料性能的影响[J].硅酸盐通报,2021,40(10):3285-3291. KANG X, ZHANG L X, DENG J J, et al. Effect of addition of Cr2O3 micropowder on properties of Al2O3-Cr2O3 refractory[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3285-3291 (in Chinese). [2] 王玉龙,王玺堂,王周福,等.高纯二氧化硅微粉含量对Al2O3-SiC-C铁沟渣线浇注料性能的影响[J].硅酸盐通报,2019,38(4):1050-1055. WANG Y L, WANG X T, WANG Z F, et al. Effect of high purity micro-silica powder content on properties of Al2O3-SiC-C castable for slag line of iron tunner[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 1050-1055 (in Chinese). [3] 王玉龙,王玺堂,王周福,等.氮化硅-氧氮化硅复合粉对Al2O3-SiC-C铁沟料性能的影响[J].耐火材料,2019,53(6):419-422. WANG Y L, WANG X T, WANG Z F, et al. Effect of Si3N4-Si2N2O composite powder on properties of Al2O3-SiC-C castables for iron runner[J]. Refractories, 2019, 53(6): 419-422 (in Chinese). [4] 李红霞.耐火材料发展概述[J].无机材料学报,2018,33(2):198-205. LI H X. Development overview of refractory materials[J]. Journal of Inorganic Materials, 2018, 33(2): 198-205 (in Chinese). [5] 王玉龙,李享成,陈平安,等.硅-铝溶胶作为耐火浇注料胶结剂的研究现状与展望[J].硅酸盐学报,2017,45(3):422-432. WANG Y L, LI X C, CHEN P G, et al. Recent development and prospects on silica-alumina colloidal bonded refractory castables[J]. Journal of the Chinese Ceramic Society, 2017, 45(3): 422-432 (in Chinese). [6] 王玉龙,王周福,王玺堂,等.耐火浇注料防爆裂研究进展[J].硅酸盐学报,2022,50(6):1762-1774. WANG Y L, WANG Z F, WANG X T, et al. Research progress on anti-spalling of refractory castables[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1762-1774 (in Chinese). [7] VAN ECK N J, WALTMAN L, NOYONS E C M, et al. Automatic term identification for bibliometric mapping[J]. Scientometrics, 2010, 82(3): 581-596. [8] CHEN C M, IBEKWE-SANJUAN F, HOU J H. The structure and dynamics of cocitation clusters: a multiple-perspective cocitation analysis[J]. Journal of the American Society for Information Science and Technology, 2010, 61(7): 1386-1409. [9] LEE W E, MOORE R E. Evolution of in situ refractories in the 20th century[J]. Journal of the American Ceramic Society, 2005, 81(6): 1385-1410. [10] FUHRER M, HEY A, LEE W E. Microstructural evolution in self-forming spinel/calcium aluminate-bonded castable refractories[J]. Journal of the European Ceramic Society, 1998, 18(7): 813-820. [11] LEE W E, ZHANG S. Melt corrosion of oxide and oxide-carbon refractories[J]. International Materials Reviews, 1999, 44(3): 77-104. [12] EWAIS E M M. Carbon based refractories[J]. Journal of the Ceramic Society of Japan, 2004, 112(1310): 517-532. [13] ANEZIRIS C G, HUBÁLKOVÁ J, BARABÁS R. Microstructure evaluation of MgO-C refractories with TiO2- and Al-additions[J]. Journal of the European Ceramic Society, 2007, 27(1): 73-78. [14] SCHNEIDER H, SCHREUER J, HILDMANN B. Structure and properties of mullite: a review[J]. Journal of the European Ceramic Society, 2008, 28(2): 329-344. [15] GOKCE A S, GURCAN C, OZGEN S, et al. The effect of antioxidants on the oxidation behaviour of magnesia-carbon refractory bricks[J]. Ceramics International, 2008, 34(2): 323-330. [16] BRAULIO M A L, RIGAUD M, BUHR A, et al. Spinel-containing alumina-based refractory castables[J]. Ceramics International, 2011, 37(6): 1705-1724. [17] ROUNGOS V, ANEZIRIS C G. Improved thermal shock performance of Al2O3-C refractories due to nanoscaled additives[J]. Ceramics International, 2012, 38(2): 919-927. [18] BAG M, ADAK S, SARKAR R. Study on low carbon containing MgO-C refractory: use of nano carbon[J]. Ceramics International, 2012, 38(3): 2339-2346. [19] BRAULIO M A L, MARTINEZ A G T, LUZ A P, et al. Basic slag attack of spinel-containing refractory castables[J]. Ceramics International, 2011, 37(6): 1935-1945. [20] MUKHOPADHYAY S, DAS PODDAR P K. Effect of preformed and in situ spinels on microstructure and properties of a low cement refractory castable[J]. Ceramics International, 2004, 30(3): 369-380. [21] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364. [22] RIBEIRO S, RODRIGUES J A. The influence of microstructure on the maximum load and fracture energy of refractory castables[J]. Ceramics International, 2010, 36(1): 263-274. [23] BAVAND-VANDCHALI M, GOLESTANI-FARD F, SARPOOLAKY H, et al. The influence of in situ spinel formation on microstructure and phase evolution of MgO-C refractories[J]. Journal of the European Ceramic Society, 2008, 28(3): 563-569. [24] CAMPOS K S, LENZ E SILVA G F B, NUNES E H M, et al. The influence of B4C and MgB2 additions on the behavior of MgO-C bricks[J]. Ceramics International, 2012, 38(7): 5661-5667. [25] BRAULIO M A L, BITTENCOURT L R M, PANDOLFELLI V C. Magnesia grain size effect on in situ spinel refractory castables[J]. Journal of the European Ceramic Society, 2008, 28(15): 2845-2852. [26] ANEZIRIS C G, KLIPPEL U, SCHÄRFL W, et al. Functional refractory material design for advanced thermal shock performance due to titania additions[J]. International Journal of Applied Ceramic Technology, 2007, 4(6): 481-489. [27] KUN P, TAPASZTÓ O, WÉBER F, et al. Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites[J]. Ceramics International, 2012, 38(1): 211-216. [28] ZHANG S, MARRIOTT N J, LEE W E. Thermochemistry and microstructures of MgO-C refractories containing various antioxidants[J]. Journal of the European Ceramic Society, 2001, 21(8): 1037-1047. [29] FAN H B, LI Y W, SANG S B. Microstructures and mechanical properties of Al2O3-C refractories with silicon additive using different carbon sources[J]. Materials Science and Engineering: A, 2011, 528(7/8): 3177-3185. [30] HASSELMAN D P H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics[J]. Journal of the American Ceramic Society, 1969, 52(11): 600-604. [31] DING D H, LV L H, XIAO G Q, et al. Improved properties of low-carbon MgO-C refractories with the addition of multilayer graphene/MgAl2O4 composite powders[J]. International Journal of Applied Ceramic Technology, 2020, 17(2): 645-656. [32] WANG Q H, LI Y W, JIN S L, et al. Enhanced mechanical properties of Al2O3-C refractories with silicon hybridized expanded graphite[J]. Materials Science and Engineering: A, 2018, 709: 160-171. [33] YU C, ZHU H X, YUAN W J, et al. Synthesis of monophase Al4O4C and the effect of Al4O4C addition to MgO-C refractory[J]. Journal of Alloys and Compounds, 2013, 579: 348-354. [34] NIGHTINGALE S A, MONAGHAN B J, BROOKS G A. Degradation of MgO refractory in CaO-SiO2-MgO-FeOx and CaO-SiO2-Al2O3-MgO-FeOx slags under forced convection[J]. Metallurgical and Materials Transactions B, 2005, 36(4): 453-461. [35] JANSSON S, BRABIE V, JONSSON P. Corrosion mechanism and kinetic behaviour of MgO-C refractory material in contact with CaO-Al2O3-SiO2-MgO slag[J]. Scandinavian Journal of Metallurgy, 2005, 34(5): 283-292. [36] HONG L, SAHAJWALLA V. Investigation of in situ chemical reactions of Al2O3-SiC-SiO2-C refractory and its interactions with slag[J]. ISIJ International, 2004, 44(5): 785-789. [37] XU R Z, ZHANG J L, FAN X Y, et al. Effect of MnO on high-alumina slag viscosity and corrosion behavior of refractory in slags[J]. ISIJ International, 2017, 57(11): 1887-1894. [38] BRABIE V. A study on the mechanism of reaction between refractory materials and aluminium deoxidised molten steel[J]. Steel Research, 1997, 68: 54-60. [39] SASAI K, MIZUKAMI Y. Reaction mechanism between alumina graphite immersion nozzle and low carbon steel[J]. ISIJ International, 1993, 34: 802-809. [40] CHEN X L, LI Y W, LI Y B, et al. Effect of temperature on the properties and microstructures of carbon refractories for blast furnace[J]. Metallurgical and Materials Transactions A, 2009, 40(7): 1675-1683. [41] LUO M, LI Y W, JIN S L, et al. Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes[J]. Materials Science and Engineering: A, 2012, 548: 134-141. [42] DING J, DENG C J, YUAN W J, et al. Novel synthesis and characterization of silicon carbide nanowires on graphite flakes[J]. Ceramics International, 2014, 40(3): 4001-4007. [43] LIU B, SUN J L, TANG G S, et al. Effects of nanometer carbon black on performance of low-carbon MgO-C composites[J]. Journal of Iron and Steel Research, International, 2010, 17(10): 75-78. [44] ZHANG S, LEE W E. Influence of additives on corrosion resistance and corroded microstructures of MgO-C refractories[J]. Journal of the European Ceramic Society, 2001, 21(13): 2393-2405. [45] ZHU T B, LI Y W, JIN S L, et al. Microstructure and mechanical properties of MgO-C refractories containing expanded graphite[J]. Ceramics International, 2013, 39(4): 4529-4537. |