[1] WANG S X, ZHU J W, HE Y W, et al. Invisible NIR spectral imaging and laser-induced thermal imaging of Na(Nd/Y)F4@glass with opposite effect for optical security[J]. Laser & Photonics Reviews, 2022, 16(8): 2200039. [2] FENG X, LUN Y P, JIANG X F, et al. Manipulating nonlinear optical response via domain control in nanocrystal-in-glass composites[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(17): e2006482. [3] KANG S L, OUYANG T C, YANG D D, et al. Enhanced 2 μm mid-infrared laser output from Tm3+-activated glass ceramic microcavities[J]. Laser & Photonics Reviews, 2020, 14(5): 1900396. [4] 张 涛,侯铮铮,荆 涛,等.Co2+掺杂ZnO-MgO-Al2O3-SiO2系微晶玻璃的制备及光学性能[J].硅酸盐通报,2021,40(11):3791-3798. ZHANG T, HOU Z Z, JING T, et al. Preparation and optical properties of Co2+-doped ZnO-MgO-Al2O3-SiO2 system glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3791-3798 (in Chinese). [5] SAKAMOTO A, YAMAMOTO S. Glass-ceramics: engineering principles and applications[J]. International Journal of Applied Glass Science, 2010, 1(3): 237-247. [6] 王明忠,刘红刚,钟 波,等.Na2O-Al2O3-SiO2-P2O5玻璃的结构和析晶性能研究[J].硅酸盐通报,2022,41(1):295-301. WANG M Z, LIU H G, ZHONG B, et al. Structure and crystallization behavior of Na2O-Al2O3-SiO2-P2O5 glasses[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 295-301 (in Chinese). [7] FAN S H, WU G B, ZHANG H, et al. Formation and selective micron-regional control of PbS quantum dots in glasses using femtosecond laser pulsation[J]. Journal of Materials Chemistry C, 2015, 3(26): 6725-6736. [8] RÓDENAS A, GU M, CORRIELLI G, et al. Three-dimensional femtosecond laser nanolithography of crystals[J]. Nature Photonics, 2019, 13(2): 105-109. [9] ZHANG B, TAN D Z, WANG Z, et al. Self-organized phase-transition lithography for all-inorganic photonic textures[J]. Light: Science & Applications, 2021, 10: 93. [10] 李子煌,高运周,范仕刚,等.超低膨胀微晶玻璃中飞秒激光直写波导探索[J].硅酸盐通报,2021,40(11):3784-3790. LI Z H, GAO Y Z, FAN S G, et al. Femtosecond laser direct written waveguides in ultra-low expansion glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3784-3790 (in Chinese). [11] TAN D Z, WANG Z, XU B B, et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices[J]. Advanced Photonics, 2021, 3: 024002. [12] CHEN Y C, SALTER P S, KNAUER S, et al. Laser writing of coherent colour centres in diamond[J]. Nature Photonics, 2017, 11(2): 77-80. [13] PAN Q W, YANG D D, DONG G P, et al. Nanocrystal-in-glass composite (NGC): a powerful pathway from nanocrystals to advanced optical materials[J]. Progress in Materials Science, 2022, 130: 100998. [14] TAN D Z, ZHANG B, QIU J R. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications[J]. Laser & Photonics Reviews, 2021, 15(9): 2000455. [15] SAKAKURA M, SHIMIZU M, SHIMOTSUMA Y, et al. Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses[J]. Applied Physics Letters, 2008, 93(23): 231112. [16] VEENHUIZEN K, MCANANY S, NOLAN D, et al. Fabrication of graded index single crystal in glass[J]. Scientific Reports, 2017, 7: 44327. [17] LIPATIEV A S, SHAKHGILDYAN G Y, VETCHINNIKOV M P, et al. Direct precipitation of CdS nanocrystals in glass by ultrafast laser pulses[J]. Materials Letters, 2022, 307: 130974. [18] SHAKHGILDYAN G Y, LIPATIEV A S, VETCHINNIKOV M P, et al. One-step micro-modification of optical properties in silver-doped zinc phosphate glasses by femtosecond direct laser writing[J]. Journal of Non-Crystalline Solids, 2018, 481: 634-642. [19] SHIMIZU M, SAKAKURA M, OHNISHI M, et al. Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates[J]. Optics Express, 2012, 20(2): 934-940. [20] LIN G, LUO F F, HE F, et al. Space-selective precipitation of Ge crystalline patterns in glasses by femtosecond laser irradiation[J]. Optics Letters, 2011, 36(2): 262-264. [21] SUN K, TAN D Z, SONG J, et al. Highly emissive deep-red perovskite quantum dots in glass: photoinduced thermal engineering and applications[J]. Advanced Optical Materials, 2021, 9(11): 2100094. [22] HUANG X J, GUO Q Y, YANG D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 2020, 14(2): 82-88. [23] QIU J R, JIANG X W, ZHU C S, et al. Manipulation of gold nanoparticles inside transparent materials[J]. Angewandte Chemie (International Ed in English), 2004, 43(17): 2230-2234. [24] ZHANG B, WANG Z, TAN D Z, et al. Ultrafast laser inducing continuous periodic crystallization in the glass activated via laser-prepared crystallite-seeds[J]. Advanced Optical Materials, 2021, 9(8): 2001962. [25] ZHANG B, TAN D Z, LIU X F, et al. Self-organized periodic crystallization in unconventional glass created by an ultrafast laser for optical attenuation in the broadband near-infrared region[J]. Advanced Optical Materials, 2019, 7(20): 1900593. [26] LOTAREV S, FEDOTOV S, LIPATIEV A, et al. Light-driven nanoperiodical modulation of alkaline cation distribution inside sodium silicate glass[J]. Journal of Non-Crystalline Solids, 2018, 479: 49-54. [27] LOTAREV S V, FEDOTOV S S, KURINA A I, et al. Ultrafast laser-induced nanogratings in sodium germanate glasses[J]. Optics Letters, 2019, 44(7): 1564-1567. [28] SUN K, TAN D Z, FANG X Y, et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 2022, 375(6578): 307-310. [29] ZHAO J J, XU X X, CHEN X T, et al. A structure model for phase separated fluoroaluminosilicate glass system by molecular dynamic simulations[J]. Journal of the European Ceramic Society, 2019, 39(15): 5018-5029. [30] ZHOU S F, JIANG N, MIURA K, et al. Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence[J]. Journal of the American Chemical Society, 2010, 132(50): 17945-17952. [31] LIPAT'EV A S, LIPAT'EVA T O, LOTAREV S V, et al. Specifics of the crystallization of lanthanum borogermanate glass by a femtosecond laser beam[J]. Glass and Ceramics, 2017, 73(11/12): 441-445. [32] LOTAREV S V, LIPATIEV A S, LIPATEVA T O, et al. Ultrafast laser-induced crystallization of lead germanate glass[J]. Crystals, 2021, 11(2): 193. [33] MUZI E, CAVILLON M, LANCRY M, et al. Polarization-oriented LiNbO3 nanocrystals by femtosecond laser irradiation in LiO2-Nb2O5-SiO2-B2O3 glasses[J]. Optical Materials Express, 2021, 11(4): 1313. [34] MCANANY S D, VEENHUIZEN K, NOLAN D A, et al. Challenges of laser-induced single-crystal growth in glass: incongruent matrix composition and laser scanning rate[J]. Crystal Growth & Design, 2019, 19(8): 4489-4497. [35] CARRUTHERS J R, PETERSON G E, GRASSO M, et al. Nonstoichiometry and crystal growth of lithium niobate[J]. Journal of Applied Physics, 1971, 42(5): 1846-1851. [36] SAVYTSKII D, MUSTERMAN E, DIEROLF V, et al. Influence of the laser scanning rate on the structure of rotating lattice single crystal lines[J]. Crystal Growth & Design, 2019, 19(11): 6324-6330. [37] SIMO A, POLTE J, PFÄNDER N, et al. Formation mechanism of silver nanoparticles stabilized in glassy matrices[J]. Journal of the American Chemical Society, 2012, 134(45): 18824-18833. [38] CAO J, LANCRY M, BRISSET F, et al. Femtosecond laser-induced crystallization in glasses: growth dynamics for orientable nanostructure and nanocrystallization[J]. Crystal Growth & Design, 2019, 19(4): 2189-2205. [39] HE X, FAN C X, POUMELLEC B, et al. Size-controlled oriented crystallization in SiO2-based glasses by femtosecond laser irradiation[J]. Journal of the Optical Society of America B, 2014, 31(2): 376. [40] MUZI E, CAVILLON M, LANCRY M, et al. Towards a rationalization of ultrafast laser-induced crystallization in lithium niobium borosilicate glasses: the key role of the scanning speed[J]. Crystals, 2021, 11(3): 290. [41] LIU C, KWON Y K, HEO J, et al. Controlled precipitation of lead sulfide quantum dots in glasses using the femtosecond laser pulses[J]. Journal of the American Ceramic Society, 2010, 93(5): 1221-1224. [42] LIPATIEV A S, LOTAREV S V, OKHRIMCHUK A G, et al. Crystal-in-glass architecture engineering: writing, erasing and rewriting by a femtosecond laser beam[J]. CrystEngComm, 2018, 20(22): 3011-3015. [43] LOTAREV S V, LIPATIEV A S, LIPATEVA T O, et al. Ultrafast-laser vitrification of laser-written crystalline tracks in oxide glasses[J]. Journal of Non-Crystalline Solids, 2019, 516: 1-8. [44] CHEN Q Q, FANG Z J, SONG H, et al. Femtosecond laser induced space-selective precipitation of Cr3+-doped ZnAl2O4 crystal in glass[J]. Journal of Alloys and Compounds, 2017, 699: 243-246. [45] LIN Z Y, HONG M H. Femtosecond laser precision engineering: from micron, submicron, to nanoscale[J]. Ultrafast Science, 2021: 1-22. [46] FERREIRA P H D, FABRIS D C N, VILLAS BOAS M O C, et al. Transparent glass-ceramic waveguides made by femtosecond laser writing[J]. Optics & Laser Technology, 2021, 136: 106742. [47] LIU Y, SHIMIZU M, ZHU B, et al. Micromodification of element distribution in glass using femtosecond laser irradiation[J]. Optics Letters, 2009, 34(2): 136-138. [48] GORNI G, VELAZQUEZ J J, KOCHANOWICZ M, et al. Tunable upconversion emission in NaLuF4-glass-ceramic fibers doped with Er3+ and Yb3+[C]//SPIE Photonics Europe. Proc SPIE 11357, Fiber Lasers and Glass Photonics: Materials Through Applications II, Online Only. 2020, 11357: 54-59. [49] 欧阳天昶,董国平,邱建荣.基于稀土离子掺杂氟氧化物微晶玻璃材料的固体激光器研究进展[J].激光与光电子学进展,2020,57(7):114-122. OUYANG T C, DONG G P, QIU J R. Research progress in solid-state lasers based on rare earth ion-doped oxyfluoride glass ceramics[J]. Laser & Optoelectronics Progress, 2020, 57(7): 114-122 (in Chinese). [50] KNORR B, VEENHUIZEN K, STONE A, et al. Optical properties and structure of Er ∶LaBGeO5 laser-induced crystals-in-glass[J]. Optical Materials Express, 2017, 7(11): 4095. [51] CHEN Q P, PAN Q W, KANG S L, et al. Transparent nanocrystal-in-glass composite (NGC) fibers for multifunctional temperature and pressure sensing[J]. Fundamental Research, 2022 [52] VEENHUIZEN K, MCANANY S, VASUDEVAN R, et al. Ferroelectric domain engineering of lithium niobate single crystal confined in glass[J]. MRS Communications, 2019, 9(1): 334-339. [53] CAO J, POUMELLEC B, BRISSET F, et al. Tunable angular-dependent second-harmonic generation in glass by controlling femtosecond laser polarization[J]. Journal of the Optical Society of America B, 2016, 33(4): 741. [54] DU X, ZHANG H, ZHOU S F, et al. Femtosecond laser induced space-selective precipitation of a deep-ultraviolet nonlinear BaAlBO3F2 crystal in glass[J]. Journal of Non-Crystalline Solids, 2015, 420: 17-20. [55] DAI Y, MA H L, LU B, et al. Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass[J]. Optics Express, 2008, 16(6): 3912-3917. |