硅酸盐通报 ›› 2022, Vol. 41 ›› Issue (6): 2181-2190.
所属专题: 新型功能材料
石勤, 刘珂, 后王新, 陈智博, 窦勐星, 王海燕, 杨恒辉
收稿日期:
2022-02-07
修订日期:
2022-03-07
出版日期:
2022-06-15
发布日期:
2022-07-01
作者简介:
石 勤(1988—),男,讲师。主要从事无机材料的研究。E-mail:877415710@qq.com
基金资助:
SHI Qin, LIU Ke, HOU Wangxin, CHEN Zhibo, DOU Mengxing, WANG Haiyan, YANG Henghui
Received:
2022-02-07
Revised:
2022-03-07
Online:
2022-06-15
Published:
2022-07-01
摘要: 沸石基缓释肥料不仅显著提高了化学肥料的利用率,而且具有改良土壤、保持土壤水分、保护生态环境等诸多优点,在农业可持续发展中具有广阔的应用前景。本文综述了近年来沸石基缓释肥料的缓释机理和应用研究现状。总结缓释机理发现,沸石对阳离子(NH+4、K+)养分的缓释主要是利用沸石对阳离子良好的吸附和离子交换性能,而沸石对阴离子(NO-3、PO3-4、SO2-4)养分的缓释则需要对沸石表面进行阳离子改性。此外,沸石与磷矿在土壤中的结合可以促进有效磷的溶解,进而促进植物生长。应用研究表明,影响沸石基缓释肥料性能的因素主要包括:沸石的类型和粒径、沸石的施用剂量和方法、土壤质地和结构以及肥料的类型和来源等。结合目前的研究现状,对沸石基缓释肥料进行经济性评价,加强工艺开发及应用示范是未来重点研究的方向。
中图分类号:
石勤, 刘珂, 后王新, 陈智博, 窦勐星, 王海燕, 杨恒辉. 沸石基缓释肥料的研究进展[J]. 硅酸盐通报, 2022, 41(6): 2181-2190.
SHI Qin, LIU Ke, HOU Wangxin, CHEN Zhibo, DOU Mengxing, WANG Haiyan, YANG Henghui. Research Progress of Zeolite-Based Slow Release Fertilizers[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(6): 2181-2190.
[1] 白玉超,王德汉,段继贤,等.生物炭、沸石与化肥配施的农学和环境效应的研究进展[J].中国农学通报,2020,36(14):93-100. BAI Y C, WANG D H, DUAN J X, et al. Agronomic and environmental effect of combined application of biochar and zeolite with chemical fertilizer: a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(14): 93-100 (in Chinese). [2] NOH Y D, KOMARNENI S, PARK M. Mineral-based slow release fertilizers: a review[J]. Korean Journal of Soil Science and Fertilizer, 2015, 48(1): 1-7. [3] AL N S E, TJPRC. A review on changes in fertilizers, from coated controlled release fertilizers (CRFs) to nanocomposites of CRFs[J]. International Journal of Agricultural Science and Research, 2019, 9(2): 53-74. [4] GIRIJAVENI V, REDDY K S, SHARMA K L, et al. Role of zeolites in improving nutrient and water storage capacity of soil and their impact on overall soil quality and crop performance[M]//Soil Science: Fundamentals to Recent Advances. Singapore: Springer Singapore, 2021: 449-467. [5] NAKHLI S A A, DELKASH M, BAKHSHAYESH B E, et al. Application of zeolites for sustainable agriculture: a review on water and nutrient retention[J]. Water, Air, & Soil Pollution, 2017, 228(12): 1-34. [6] AGUSTINA T E, RIZKY I. Characterization and utilization of zeolite for NPK slow release fertilizer[J]. International Journal of Engineering, 2018, 31(4): 276-283. [7] SOLTYS L, MYRONYUK I, TATARCHUK T, et al. Zeolite-based composites as slow release fertilizers (review)[J]. Фiзика i хiмiя твердого тiла, 2020, 21(1): 89-104. [8] 姜新福,孙向阳,关裕宓.天然沸石在土壤改良和肥料生产中的应用研究进展[J].草业科学,2004,21(4):48-51. JIANG X F, SUN X Y, GUAN Y M. Research development in the application of natural zeolite in soil improvement and fertilizer production[J]. Pratacultural Science, 2004, 21(4): 48-51 (in Chinese). [9] 解占军,王秀娟,牛世伟,等.沸石与改性沸石在土壤质量改良中的应用研究进展[J].杂粮作物,2006,26(2):142-144. XIE Z J, WANG X J, NIU S W, et al. Zeolite and modified application as soil amendment[J]. Rain Fed Crops, 2006, 26(2): 142-144 (in Chinese). [10] 祁 娜,孙向阳,张婷婷,等.沸石在土壤改良及污染治理中的应用研究进展[J].贵州农业科学,2011,39(11):133-135. QI N, SUN X Y, ZHANG T T, et al. Advances in the application of zeolite in soil improvement and pollution control[J]. Guizhou Agricultural Sciences, 2011, 39(11): 133-135 (in Chinese). [11] 陈 江,陈霄燕,戴慧敏,等.沸石矿物在东北地区黑土地盐碱化土壤改良中的应用[J].地质与资源,2020,29(6):621-626. CHEN J, CHEN X Y, DAI H M, et al. Application of zeolite in improvement of saline-alkali soil in northeast China[J]. Geology and Resources, 2020, 29(6): 621-626 (in Chinese). [12] LOUHAR G, VERMA S, DAHIYA G. Zeolites: a potential source of soil amendments to improve soil properties[J]. Chem Sci Rev Lett, 2020, 9(35): 777-785. [13] HE X B, HUANG Z B. Zeolite application for enhancing water infiltration and retention in loess soil[J]. Resources, Conservation and Recycling, 2001, 34(1): 45-52. [14] GHOLIZADEH-SARABI S, SEPASKHAH A R. Effect of zeolite and saline water application on saturated hydraulic conductivity and infiltration in different soil textures[J]. Archives of Agronomy and Soil Science, 2013, 59(5): 753-764. [15] DE CAMPOS BERNARDI A C, ANCHÃO OLIVIERA P P, DE MELO MONTE M B, et al. Brazilian sedimentary zeolite use in agriculture[J]. Microporous and Mesoporous Materials, 2013, 167: 16-21. [16] TALEBNEZHAD R, SEPASKHAH A R. Effects of bentonite on water infiltration in a loamy sand soil[J]. Archives of Agronomy and Soil Science, 2013, 59(10): 1409-1418. [17] WEA T Y, UNONIS M N A, KHAIRUDDIN M I, et al. Mechanism in using commercial high efficient zeolite-base greenfeed slow release fertilizers[J]. Journal of Agricultural Chemistry and Environment, 2018, 7(1): 1-9. [18] GREER F R, SHANNON M. Infant methemoglobinemia: the role of dietary nitrate in food and water[J]. Pediatrics, 2005, 116(3): 784-786. [19] PEÑA-HARO S, LLOPIS-ALBERT C, PULIDO-VELAZQUEZ M, et al. Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain[J]. Journal of Hydrology, 2010, 392(3/4): 174-187. [20] ENGLERT A H, RUBIO J. Characterization and environmental application of a Chilean natural zeolite[J]. International Journal of Mineral Processing, 2005, 75(1): 21-29. [21] SFECHIS S, VIDICAN R, SANDOR M, et al. Using assessment of zeolite amendments in agriculture[J]. ProEnvironment, 2015, 8(21): 85-88. [22] TORMA S, VILCEK J, ADAMISIN P, et al. Influence of natural zeolite on nitrogen dynamics in soil[J]. Turkish Journal of Agriculture and Forestry, 2014, 38: 739-744. [23] SEPASKHAH A R, YOUSEFI F. Effects of zeolite application on nitrate and ammonium retention of a loamy soil under saturated conditions[J]. Soil Research, 2007, 45(5): 368. [24] BAERLOCHER C, MCCUSKER L B, OLSON D H. P42/mmc[M]//Atlas of Zeolite Framework Types. Amsterdam: Elsevier, 2007: 74-75. [25] HUANG Z T, PETROVIC A M. Clinoptilolite zeolite influence on nitrate leaching and nitrogen use efficiency in simulated sand based golf greens[J]. Journal of Environmental Quality, 1994, 23(6): 1190-1194. [26] PIÑÓN-VILLARREAL A R, BAWAZIR A S, SHUKLA M K, et al. Retention and transport of nitrate and ammonium in loamy sand amended with clinoptilolite zeolite[J]. Journal of Irrigation and Drainage Engineering, 2013, 139(9): 755-765. [27] ASILIAN H, MORTAZAVI S B, KAZEMIAN H, et al. Removal of ammonia from air, using three Iranian natural zeolites[J]. Iranian Journal of Public Health, 2004, 33(1): 45-51. [28] AHMED O, YAP C H, MUHAMAD A B N. Minimizing ammonia loss from urea through mixing with zeolite and acid sulphate soil[J]. International Journal of Physical Sciences, 2010, 5: 2198-2202. [29] KURODA K, HANAJIMA D, FUKUMOTO Y, et al. Isolation of thermophilic ammonium-tolerant bacterium and its application to reduce ammonia emission during composting of animal wastes[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(2): 286-292. [30] BAUTISTA J M, KIM H, AHN D H, et al. Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite[J]. Korean Journal of Chemical Engineering, 2011, 28(1): 189-194. [31] LEGGO P J. The efficacy of the organo-zeolitic bio-fertilizer[J]. Agrotechnology, 2015, 4(1): 1000130. [32] QIAN J H, DORAN J W, WEIER K L, et al. Soil denitrification and nitrous oxide losses under corn irrigated with high-nitrate groundwater[J]. Journal of Environmental Quality, 1997, 26(2): 348-360. [33] TAHERI-SODEJANI H, GHOBADINIA M, TABATABAEI S H, et al. Using natural zeolite for contamination reduction of agricultural soil irrigated with treated urban wastewater[J]. Desalination and Water Treatment, 2015, 54(10): 2723-2730. [34] BHARDWAJ D, SHARMA M, SHARMA P, et al. Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer[J]. Journal of Hazardous Materials, 2012, 227/228: 292-300. [35] PAGLIARI P H, STROCK J S, ROSEN C J. Changes in soil pH and extractable phosphorus following application of Turkey manure incinerator ash and triple superphosphate[J]. Communications in Soil Science and Plant Analysis, 2010, 41(12): 1502-1512. [36] RAJPU T. Influence of incubation period, temperature and different phosphate levels on phosphate adsorption in soil[J]. American Journal of Agricultural and Biological Sciences, 2014, 9(2): 251-260. [37] SHARPLEY A N, HERRON S, DANIEL T. Overcoming the challenges of phosphorus-based management in poultry farming[J]. Journal of Soil and Water Conservation, 2007, 62(6): 375-389. [38] TELES A P B, RODRIGUES M, PAVINATO P S. Solubility and efficiency of rock phosphate fertilizers partially acidulated with zeolite and pillared clay as additives[J]. Agronomy, 2020, 10(7): 918. [39] PICKERING H W, MENZIES N W, HUNTER M N. Zeolite/rock phosphate: a novel slow release phosphorus fertilizer for potted plant production[J]. Scientia Horticulturae, 2002, 94(3/4): 333-343. [40] WU P X, LIAO Z W. Study on structural characteristics of pillared clay modified phosphate fertilizers and its increase efficiency mechanism[J]. Journal of Zhejiang University Science B, 2005, 6(3): 195-201. [41] BANSIWAL A K, RAYALU S S, LABHASETWAR N K, et al. Surfactant-modified zeolite as a slow release fertilizer for phosphorus[J]. Journal of Agricultural and Food Chemistry, 2006, 54(13): 4773-4779. [42] LANCELLOTTI I, TOSCHI T, PASSAGLIA E, et al. Release of agronomical nutrient from zeolitite substrate containing phosphatic waste[J]. Environmental Science and Pollution Research International, 2014, 21(23): 13237-13242. [43] FUJINUMA R, HUNTER M, MENZIES N. Sunflowers drive acid dissolution of rock phosphate when banded with ammonium zeolite[J]. Acta Horticulturae, 2015(1104): 21-28. [44] MING D W, ALLEN E R. Use of natural zeolites in agronomy, horticulture and environmental soil remediation[J]. Reviews in Mineralogy and Geochemistry, 2001, 45(1): 619-654. [45] MORAETIS D, PAPAGIANNIDOU S, PRATIKAKIS A, et al. Effect of zeolite application on potassium release in sandy soils amended with municipal compost[J]. Desalination and Water Treatment, 2016, 57(28): 13273-13284. [46] GÜL A, EROUL D, ONGUN A R. Comparison of the use of zeolite and perlite as substrate for crisp-head lettuce[J]. Scientia Horticulturae, 2005, 106(4): 464-471. [47] RABAI K, KASIM O. Use of formulated nitrogen, phosphorus, and potassium compound fertilizerusing clinoptilolite zeolite in maize (zea mays L.) cultivation[J]. Emirates Journal of Food and Agriculture, 2013, 25(9): 713. [48] LIN L, LEI Z F, WANG L, et al. Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites[J]. Separation and Purification Technology, 2013, 103: 15-20. [49] ESLAMI M, KHORASSANI R, FOTOVAT A, et al. NH+4-K+ co-loaded clinoptilolite as a binary fertilizer[J]. Archives of Agronomy and Soil Science, 2020, 66(1): 33-45. [50] HASBULLAH N A, AHMED O H, AB MAJID N M. Effects of amending phosphatic fertilizers with clinoptilolite zeolite on phosphorus availability and its fractionation in an acid soil[J]. Applied Sciences, 2020, 10(9): 3162. [51] ZHENG J L, CHEN T T, WU Q, et al. Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress[J]. Agricultural Water Management, 2018, 206: 241-251. [52] 吴 奇,陈弘扬,王延智,等.斜发沸石对辽西半干旱区节水灌溉稻田的节水减肥效应[J].农业机械学报,2021,52(6):305-313+406. WU Q, CHEN H Y, WANG Y Z, et al. Water-saving and fertilizer-reducing effect of clinoptilolite in water-saving irrigated paddy fields in semiarid areas of western Liaoning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(6): 305-313+406 (in Chinese). [53] 夏桂敏,刘光辉,沙 炎,等.斜发沸石对干湿交替稻田土壤速效钾和产量的影响[J].农业工程学报,2019,35(18):101-109. XIA G M, LIU G H, SHA Y, et al. Impact of zeolite on dynamic of soil available potassium and grain yield in alternate wetting and drying rice system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 101-109 (in Chinese). [54] 王甲辰,陈延华,邹国元,等.添加不同颗粒沸石粉对沙壤玉米NPK吸收和水分、养分淋溶的影响[J].水土保持学报,2015,29(2):1-6+34. WANG J C, CHEN Y H, ZOU G Y, et al. Effects of adding different particle composition of zeolite powders to sandy soil on NPK uptake of corn, irrigation leakage and nutrient leaching[J]. Journal of Soil and Water Conservation, 2015, 29(2): 1-6+34 (in Chinese). [55] CATLI N J, MIGO V P, ALFAFARA C G, et al. Optimization of the production of a complete fertilizer formulation by batch impregnation using clinoptilolite zeolite as carrier[J]. IOP Conference Series: Materials Science and Engineering, 2020, 778(1): 012066. [56] SZATANIK-KLOC A, SZEREMENT J, ADAMCZUK A, et al. Effect of low zeolite doses on plants and soil physicochemical properties[J]. Materials (Basel, Switzerland), 2021, 14(10): 2617. [57] OZBAHCE A, TARI A F, GÖNÜLAL E, et al. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress[J]. Archives of Agronomy and Soil Science, 2015, 61(5): 615-626. [58] IPPOLITO J A, TARKALSON D D, LEHRSCH G A. Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth[J]. Soil Science, 2011, 176(3): 136-142. [59] ZWINGMANN N, SINGH B, MACKINNON I D R, et al. Zeolite from alkali modified kaolin increases NH+4 retention by sandy soil: column experiments[J]. Applied Clay Science, 2009, 46(1): 7-12. [60] WEBER M A, BARBARICK K A, WESTFALL D G. Ammonium adsorption by a zeolite in a static and a dynamic system[J]. Journal of Environmental Quality, 1983, 12(4): 549-552. [61] PERRIN T S, DROST D T, BOETTINGER J L, et al. Ammonium-loaded clinoptilolite: a slow-release nitrogen fertilizer for sweet corn[J]. Journal of Plant Nutrition, 1998, 21(3): 515-530. [62] MALEKIAN R, ABEDI-KOUPAI J, ESLAMIAN S S. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth[J]. Journal of Hazardous Materials, 2011, 185(2/3): 970-976. [63] 栗印环,张秀兰,秦 雪,等.天然沸石对肥料的控释作用探究[J].非金属矿,2013,36(4):53-55. LI Y H, ZHANG X L, QIN X, et al. Study on features of controlled release of natural zeolite-coated compound fertilizers[J]. Non-Metallic Mines, 2013, 36(4): 53-55 (in Chinese). [64] DUBEY A, MAILAPALLI D R. Zeolite coated urea fertilizer using different binders: fabrication, material properties and nitrogen release studies[J]. Environmental Technology & Innovation, 2019, 16: 100452. [65] MIHOK F, MACKO J, ORIAK A, et al. Controlled nitrogen release fertilizer based on zeolite clinoptilolite: study of preparation process and release properties using molecular dynamics[J]. Current Research in Green and Sustainable Chemistry, 2020, 3: 100030. [66] TSINTSKALADZE G, EPRIKASHVILI L, URUSHADZE T, et al. Nanomodified natural zeolite as a fertilizer of prolonged activity[J]. Annals of Agrarian Science, 2016, 14(3): 163-168. [67] JHA V K, HAYASHI S. Modification on natural clinoptilolite zeolite for its NH+4 retention capacity[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 29-35. [68] LI Z H, ZHANG Y P. Use of surfactant-modified zeolite to carry and slowly release sulfate[J]. Desalination and Water Treatment, 2010, 21(1/2/3): 73-78. [69] THIRUNAVUKKARASU M, SUBRAMANIAN K S. Surface modified nano-zeolite used as carrier for slow release of sulphur[J]. Journal of Applied and Natural Science, 2014, 6(1): 19-26. [70] KHAN M Z H, ISLAM M R, NAHAR N, et al. Synthesis and characterization of nanozeolite based composite fertilizer for sustainable release and use efficiency of nutrients[J]. Heliyon, 2021, 7(1): e06091. [71] PIMSEN R, PORRAWATKUL P, NUENGMATCHA P, et al. Efficiency enhancement of slow release of fertilizer using nanozeolite-chitosan/sago starch-based biopolymer composite[J]. Journal of Coatings Technology and Research, 2021, 18(5): 1321-1332. [72] LATEEF A, NAZIR R, JAMIL N, et al. Synthesis and characterization of zeolite based nano-composite: an environment friendly slow release fertilizer[J]. Microporous and Mesoporous Materials, 2016, 232: 174-183. [73] JUMAER I, SUMARNI W, NINGRUM L W, et al. Using of low grade zeolite based fly ash as slow release agent for zea mays growth[J]. Journal of Physics: Conference Series, 2020, 1567(2): 022036. [74] LI J, ZHUANG X G, FONT O, et al. Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer[J]. Journal of Hazardous Materials, 2014, 265: 242-252. [75] FLORES C G, SCHNEIDER H, MARCILIO N R, et al. Potassic zeolites from Brazilian coal ash for use as a fertilizer in agriculture[J]. Waste Management, 2017, 70: 263-271. [76] 傅金祥,张延平,李 森,等.改性沸石氨氮吸附剂的制备及其在生活污水处理中的应用[J].硅酸盐通报,2021,40(5):1728-1734. FU J X, ZHANG Y P, LI S, et al. Preparation of modified zeolite ammonia nitrogen adsorbent and its application in domestic sewage treatment[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1728-1734 (in Chinese). [77] 崔家新,王连勇,张 坤,等.粉煤灰基沸石处理氮磷废水的研究进展[J].硅酸盐通报,2021,40(8):2622-2630. CUI J X, WANG L Y, ZHANG K, et al. Research progress on treatment of nitrogen and phosphorus wastewater with fly ash-based zeolite[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(8): 2622-2630 (in Chinese). [78] HERMASSI M, VALDERRAMA C, FONT O, et al. Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer[J]. Science of the Total Environment, 2020, 731: 139002. [79] BONETTI B, WALDOW E C, TRAPP G, et al. Production of zeolitic materials in pilot scale based on coal ash for phosphate and potassium adsorption in order to obtain fertilizer[J]. Environmental Science and Pollution Research International, 2021, 28(3): 2638-2654. [80] 李鑫媛.天然沸石和改性沸石对硒(Ⅳ)的吸附性研究及在土壤和植物中的再利用[D].北京:北京林业大学,2020. LI X Y. Study on the adsorption of natural zeolite and modified zeolite to selenium (Ⅳ) and its reuse in soil and plants[D]. Beijing: Beijing Forestry University, 2020 (in Chinese). |
[1] | 王健祥, 袁建华, 刘晓, 杨芸, 于飞, 马杰. 沸石合成后酸位点调控策略及其在VOCs催化氧化中应用进展[J]. 硅酸盐通报, 2024, 43(1): 158-171. |
[2] | 谢修鑫, 廖立兵, 雷馨宇, 王丽娟, 唐晓尉. EDTA-LDH/zeolite制备及其对重金属离子的吸附[J]. 硅酸盐通报, 2024, 43(1): 370-382. |
[3] | 邓永刚, 代婷婷, 孙晨, 杨元全. 沸石微粉对磷酸钾镁水泥水化性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3083-3088. |
[4] | 金星, 傅金祥, 张黎, 何祥. 锰氧化膜包覆沸石的制备及其处理含锰水特性研究[J]. 硅酸盐通报, 2023, 42(9): 3295-3305. |
[5] | 张红智, 张燕挺, 宋金锐, 刘景怡, 高玉芳, 李宁, 李晓峰. 晶种溶液辅助合成ZSM-5沸石及偏三甲苯异构化催化性能研究[J]. 硅酸盐通报, 2023, 42(7): 2563-2578. |
[6] | 王宁, 陈宇昕, 徐文盛, 安胜利, 彭军, 彭继华. 氨氮废水处理用新型沸石化陶粒的制备[J]. 硅酸盐通报, 2023, 42(5): 1864-1874. |
[7] | 杨露婷, 刘勇. ZSM-5沸石的合成、再生及其对废水中有机物的吸附研究[J]. 硅酸盐通报, 2023, 42(12): 4552-4558. |
[8] | 罗仁, 芦雨薇, 许源, 樊晋源, 刘怀, 段平. 改性5A沸石对偏高岭土地聚物微观结构及抗泛碱性能的影响[J]. 硅酸盐通报, 2023, 42(10): 3633-3642. |
[9] | 刘文静, 单江博, 廖宁, 李亚伟, 潘丽萍, 戴亚洁, 朱天彬. 不同温度下合成沸石对铝酸钙水泥水化行为的影响[J]. 硅酸盐通报, 2022, 41(5): 1510-1521. |
[10] | 孙美娟, 姚丕强, 黄雄, 余睿, 水中和, 蒋春园, 范定强. 沸石对海水拌合超高性能混凝土性能的影响[J]. 硅酸盐通报, 2022, 41(5): 1649-1655. |
[11] | 朱思雨, 李丽, 刘泽, 张彤, 韩凤兰, 马真非, 刘佳钰. 硅锰渣复合粉煤灰水热合成NaA沸石及其表征[J]. 硅酸盐通报, 2022, 41(2): 634-639. |
[12] | 王信刚, 陈涛, 赵华, 李玉洁. 二乙醇单异丙醇胺-三异丙醇胺激发沸石粉后期活性机理研究[J]. 硅酸盐通报, 2021, 40(9): 2891-2897. |
[13] | 周娟苹, 历新宇, 杨旭, 韩顺玉, 孟万, 姜男哲. 化学改性沸石对重金属离子去除的研究进展[J]. 硅酸盐通报, 2021, 40(9): 2978-2988. |
[14] | 崔家新, 王连勇, 张坤, 孙延文, 韩建丽. 粉煤灰基沸石处理氮磷废水的研究进展[J]. 硅酸盐通报, 2021, 40(8): 2622-2630. |
[15] | 桂若铭, 廖宜顺, 黄浩然. 沸石粉对硫铝酸盐水泥水化行为的影响机理研究[J]. 硅酸盐通报, 2021, 40(7): 2138-2144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||