[1] MEHTA P K, MONTEIRO P J M. Concrete: microstructure, properties, and materials[M]. New York: The McGraw-Hill, 2016: 26-27. [2] 沈春华.水泥基材料水分传输的研究[D].武汉:武汉理工大学,2007:2-3. SHEN C H. Researches on the moisture transport of cement-based materials[D]. Wuhan: Wuhan University of Technology, 2007: 2-3 (in Chinese). [3] PINSON M B, MASOERO E, BONNAUD P A, et al. Hysteresis from multiscale porosity: modeling water sorption and shrinkage in cement paste[J]. Physical Review Applied, 2015, 3(6): 064009. [4] MA H Y, LI Z J. Realistic pore structure of Portland cement paste: experimental study and numerical simulation[J]. Computers & Concrete, 2013, 11(4): 317-336. [5] 张 伟,王 攀,王鑫鹏,等.分子动力学理论研究初始缺陷对水泥基材料性能的影响[J].硅酸盐通报,2020,39(3):685-690+695. ZHANG W, WANG P, WANG X P, et al. Effect of initial defect on performance of cement-based materials by molecular dynamics theory[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 685-690+695 (in Chinese). [6] HOU D S, MA H Y, ZHU Y, et al. Calcium silicate hydrate from dry to saturated state: structure, dynamics and mechanical properties[J]. Acta Materialia, 2014, 67: 81-94. [7] ZHOU J K, LIANG Y Z. Effect of water on the dynamic tensile mechanical properties of calcium silicate hydrate: based on molecular dynamics simulation[J]. Materials, 2019, 12(17): 2837. [8] HOU D S, LI H B, ZHANG L N, et al. Nano-scale mechanical properties investigation of C-S-H from hydrated tri-calcium silicate by nano-indentation and molecular dynamics simulation[J]. Construction and Building Materials, 2018, 189: 265-275. [9] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. [10] SHAHSAVARI R, PELLENQ R J M, ULM F J. Empirical force fields for complex hydrated calcio-silicate layered materials[J]. Phys Chem Chem Phys, 2011, 13(3): 1002-1011. [11] YAPHARY Y L, LAU D, SANCHEZ F, et al. Effects of sodium/calcium cation exchange on the mechanical properties of calcium silicate hydrate (C-S-H)[J]. Construction and Building Materials, 2020, 243: 118283. [12] SINDU B S, SASMAL S. Molecular dynamics simulations for evaluation of surfactant compatibility and mechanical characteristics of carbon nanotubes incorporated cementitious composite[J]. Construction and Building Materials, 2020, 253: 119190. [13] PELLENQ R J M, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[J]. PNAS, 2009, 106(38): 16102-16107. [14] BONNAUD P A, MANZANO H, MIURA R, et al. Temperature dependence of nanoconfined water properties: application to cementitious materials[J]. The Journal of Physical Chemistry C, 2016, 120(21): 11465-11480. [15] CHEN J J, THOMAS J J, TAYLOR H F W, et al. Solubility and structure of calcium silicate hydrate[J]. Cement and Concrete Research, 2004, 34(9): 1499-1519. [16] ALLEN A J, THOMAS J J, JENNINGS H M. Composition and density of nanoscale calcium-silicate-hydrate in cement[J]. Nature Materials, 2007, 6(4): 311-316. [17] HOU D S, ZHU Y, LU Y Y, et al. Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale: a molecular dynamics study[J]. Materials Chemistry and Physics, 2014, 146(3): 503-511. [18] RIVAS MURILLO J S, MOHAMED A, HODO W, et al. Computational modeling of shear deformation and failure of nanoscale hydrated calcium silicate hydrate in cement paste: calcium silicate hydrate Jennite[J]. International Journal of Damage Mechanics, 2016, 25(1): 98-114. [19] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. [20] RICHARDSON I G. Model structures for C-(A)-S-H(I)[J]. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2014, 70(6): 903-923. [21] SOYER-UZUN S, CHAE S R, BENMORE C J, et al. Compositional evolution of calcium silicate hydrate (C-S-H) structures by total X-ray scattering[J]. Journal of the American Ceramic Society, 2012, 95(2): 793-798. [22] SVENUM I H, RINGDALEN I G, BLEKEN F L, et al. Structure, hydration, and chloride ingress in C-S-H: insight from DFT calculations[J]. Cement and Concrete Research, 2020, 129: 105965. [23] ABDOLHOSSEINI QOMI M J, KRAKOWIAK K J, BAUCHY M, et al. Combinatorial molecular optimization of cement hydrates[J]. Nature Communications, 2014, 5: 4960. [24] HAJILAR S, SHAFEI B. Nano-scale investigation of elastic properties of hydrated cement paste constituents using molecular dynamics simulations[J]. Computational Materials Science, 2015, 101: 216-226. |