[1] ASSI L N, CARTER K, DEAVER E, et al. Review of availability of source materials for geopolymer/sustainable concrete[J]. Journal of Cleaner Production, 2020, 263: 121477. [2] 郭玉萍,王海波,牛全林.超硫酸盐水泥的组成、制备及性能[J].工程质量,2016,34(11):66-68. GUO Y P, WANG H B, NIU Q L. Composition, preparation and properties of supersulfated cement[J]. Construction Quality, 2016, 34(11): 66-68 (in Chinese). [3] WANG J, YU B Y, GAO Y X. Hydration characteristics of super sulphated cement with different fineness[C]//Advances in Intelligent Systems Research, Proceedings of the International Conference on Material and Environmental Engineering (ICMAEE 2014). Jiujiang, China. Paris, France: Atlantis Press, 2014. [4] MATSCHEI T, BELLMANN F, STARK J. Hydration behaviour of sulphate-activated slag cements[J]. Advances in Cement Research, 2005, 17(4): 167-178. [5] 余保英,赵日煦,杨 文,等.同等P2O5掺量下,不同石膏对超硫酸盐水泥水化机理的影响[J].硅酸盐通报,2017,36(5):1542-1547. YU B Y, ZHAO R X, YANG W, et al. Effects of gypsum with same content of P2O5 on hydration mechanism of supersulphated cement[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(5): 1542-1547 (in Chinese). [6] 周建伟,程宝军,余保英,等.脱硫石膏的热处理对超硫酸盐水泥性能的影响[J].无机盐工业,2020,52(11):79-85. ZHOU J W, CHENG B J, YU B Y, et al. Effect of heat-treated desulfurized gypsum on properties of super sulfated cement[J]. Inorganic Chemicals Industry, 2020, 52(11): 79-85 (in Chinese). [7] SONEBI M, ABDALQADER A, FAYYAD T, et al. Optimisation of rheological parameters, induced bleeding, permeability and mechanical properties of supersulfated cement grouts[J]. Construction and Building Materials, 2020, 262: 120078. [8] 孙正宁,周 健,慕 儒,等.新型超硫酸盐水泥水化硬化机理[J].硅酸盐通报,2019,38(8):2362-2368. SUN Z N, ZHOU J, MU R, et al. Hydration and hardening mechanisms of newly developed supersulfated cement[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2362-2368 (in Chinese). [9] PHELIPOT A, LANOS C, SAMSON G, et al. Super sulfated cement: formulation and uses[J]. CONMAT (Construction Materials Conference a Success), 2015: 10. [10] PINTO S R, ANGULSKI DA LUZ C, MUNHOZ G S, et al. Resistance of phosphogypsum-based supersulfated cement to carbonation and chloride ingress[J]. Construction and Building Materials, 2020, 263: 120640. [11] GROUNDS T, NOWELL D V, WILBURN F W. Resistance of supersulfated cement to strong sulfate solutions[J]. Journal of Thermal Analysis and Calorimetry, 2003, 72(1): 181-190. [12] 李 磊.冶金渣在超硫酸盐水泥中的应用及其增强机理研究[D].武汉:武汉理工大学,2010. LI L. Research of enhance mechanism and application on supersulphated cement using metallurgical slag[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). [13] 陆 瑶,李双喜,田亚超,等.碱激发剂对超硫酸盐水泥及其混凝土性能的影响[J].粉煤灰综合利用,2020,34(6):59-63+115. LU Y, LI S X, TIAN Y C, et al. The effect of alkali activator on the properties of super sulfate cement and concrete[J]. Fly Ash Comprehensive Utilization, 2020, 34(6): 59-63+115 (in Chinese). [14] MASOUDI J R. Examining compositions, hydration mechanisms and properties of supersulfated cement for use in concrete[D]. Toronto: University of Toronto, 2018. [15] 王发洲,黄大凡,杨 进,等.干湿循环对混凝土单面盐冻破坏的影响[J].武汉理工大学学报,2016,38(4):8-13. WANG F Z, HUANG D F, YANG J, et al. The effect of dry-wet circulation on one-sided salt frost damage of concrete[J]. Journal of Wuhan University of Technology, 2016, 38(4): 8-13 (in Chinese). [16] 赵燕茹,刘芳芳,王 磊,等.单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J].材料导报,2020,34(12):12064-12069. ZHAO Y R, LIU F F, WANG L, et al. Modeling of the compressive strength of basalt fiber concrete based on pore structure under single-side freeze-thaw condition[J]. Materials Reports, 2020, 34(12): 12064-12069 (in Chinese). [17] ZHOU Y, PENG Z C, CHEN L C, et al. The influence of two types of alkali activators on the microstructure and performance of supersulfated cement concrete: mitigating the strength and carbonation resistance[J]. Cement and Concrete Composites, 2021, 118: 103947. [18] 吴鹏程,杨全兵,徐俊辉,等.低危害除冰盐对水泥混凝土盐冻破坏的影响及其机理[J].建筑材料学报,2020,23(2):317-321+327. WU P C, YANG Q B, XU J H, et al. Effects of a low-harm deicing salt on the salt-frost scaling of concrete and its mechanism[J]. Journal of Building Materials, 2020, 23(2): 317-321+327 (in Chinese). [19] 杨全兵.混凝土盐冻破坏机理(Ⅱ):冻融饱水度和结冰压[J].建筑材料学报,2012,15(6):741-746. YANG Q B. One of mechanisms on the deicer-frost scaling of concrete (Ⅱ): degree of saturation and ice-formation pressure during freezing-thawing cycles[J]. Journal of Building Materials, 2012, 15(6): 741-746 (in Chinese). [20] 徐存东,温钦钰,丁廉营,等.混凝土动弹模量在盐冻作用下的衰变试验[J].兰州理工大学学报,2017,43(2):138-142. XU C D, WEN Q Y, DING L Y, et al. Experiment of decay of dynamic elastic modulus of concrete under freeze salt action[J]. Journal of Lanzhou University of Technology, 2017, 43(2): 138-142 (in Chinese). [21] 曾鲁平,赵 爽,王 伟,等.硬化喷射混凝土的气泡结构特性、抗水渗透及抗冻性能[J].硅酸盐学报,2020,48(11):1781-1790. ZENG L P, ZHAO S, WANG W, et al. Air-void structure characteristics, water penetration resistance and freeze-thaw resistance of hardened shotcrete[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1781-1790 (in Chinese). [22] SUN Z N, ZHOU J, QI Q L, et al. Influence of fly ash on mechanical properties and hydration of calcium sulfoaluminate-activated supersulfated cement[J]. Materials, 2020, 13(11): 2514. [23] RUBERT S, ANGULSKI DA LUZ C, VARELA M V F, et al. Hydration mechanisms of supersulfated cement[J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(2): 971-980. |