[1] 谢和平.深部岩体力学与开采理论研究进展[J].煤炭学报,2019,44(5):1283-1305. XIE H P. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305 (in Chinese). [2] 何满潮,钱七虎.深部岩体力学基础[M].北京:科学出版社,2010. HE M C, QIAN Q H. The basis of deep rock mechanics[M]. Beijing: Science Press, 2010 (in Chinese). [3] 李彦斌,任 杰,林启祥.深部高应力软岩巷道刚柔耦合支护技术研究[J].煤炭技术,2019,38(10):1-4. LI Y B, REN J, LIN Q X. Study on support technology of deep high stress soft rock roadway[J]. Coal Technology, 2019, 38(10): 1-4 (in Chinese). [4] 张爱卿,吴爱祥,王贻明,等.复杂破碎软岩巷道支护技术及分区分级支护体系研究[J].矿业研究与开发,2021,41(1):15-20. ZHANG A Q, WU A X, WANG Y M, et al. Study on the support technology of complex broken soft rock roadway and support system of zoning and grading[J]. Mining Research and Development, 2021, 41(1): 15-20 (in Chinese). [5] 晁先进.回采工作面破碎顶板注浆加固技术及应用[J].煤炭科技,2020,41(5):78-79. CHAO X J. Grouting reinforcement technology and application of broken roof in coal winning face[J]. Coal Science & Technology Magazine, 2020, 41(5): 78-79 (in Chinese). [6] 梁旭超,马振乾,祖自银,等.破碎煤岩巷道注浆加固材料实验及应用研究[J].中国矿业,2021,30(5):149-154+160. LIANG X C, MA Z Q, ZU Z Y, et al. Experiment and application of grouting reinforcement material for broken coal and rock in roadway[J]. China Mining Magazine, 2021, 30(5): 149-154+160 (in Chinese). [7] 陈 城,彭丽云,张振华.超细水泥-水玻璃双液浆的性能研究及砂土注浆效果分析[J].硅酸盐通报,2018,37(12):3883-3887. CHEN C, PENG L Y, ZHANG Z H. Performance of superfine cement-water glass double slurry and effect analysis on sand grouting[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3883-3887 (in Chinese). [8] 周茗如,彭新新,苏波涛,等.普通水泥与超细水泥注浆性能分析及其黄土注浆效果对比研究[J].硅酸盐通报,2017,36(5):1673-1678. ZHOU M R, PENG X X, SU B T, et al. Grouting performance of ordinary cement and superfine cement and comparison of grouting effect in loess[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(5): 1673-1678 (in Chinese). [9] HAN B G, ZHANG L Q, ZHANG C Y, et al. Reinforcement effect and mechanism of carbon fibers to mechanical and electrically conductive properties of cement-based materials[J]. Construction and Building Materials, 2016, 125: 479-489. [10] 周 芬,陈小晔,杜运兴.碳纤维织物增强水泥砂浆板平面内抗剪性能[J].湖南大学学报(自然科学版),2021,48(5):39-46. ZHOU F, CHEN X Y, DU Y X. Study on in-plane shear behavior of CTRM plate[J]. Journal of Hunan University (Natural Sciences), 2021, 48(5): 39-46 (in Chinese). [11] 谢 金,杨伟军.碳纤维增强水泥基复合材料的制备及热电性能研究[J].功能材料,2020,51(4):4148-4152+4159. XIE J, YANG W J. Preparation and thermoelectric properties of carbon fiber reinforced cement-based composite[J]. Journal of Functional Materials, 2020, 51(4): 4148-4152+4159 (in Chinese). [12] HE S, YANG E H. Strategic strengthening of the interfacial transition zone (ITZ) between microfiber and cement paste matrix with carbon nanofibers (CNFs)[J]. Cement and Concrete Composites, 2021, 119: 104019. [13] 王志航,许金余,张彤,等.碳纤维改性聚合物水泥复合填缝材料拉伸力学性能研究[J].化工新型材料,2021(12):1-10. WANG Z H, XU J Y, ZHANG T, et al. The tensile mechanical properties of carbon fiber modified polymer cement-based composite sealing material[J]. New Chemical Materials, 2021(12): 1-10 (in Chinese). [14] 程小伟,秦 丹,赵殊勋,等.动态冲击下纤维素固井水泥石力学性能及增韧机理研究[J].硅酸盐通报,2019,38(6):1918-1922+1928. CHENG X W, QIN D, ZHAO S X, et al. Mechanical properties and toughening mechanism of cellulose cement under dynamic impact[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(6): 1918-1922+1928 (in Chinese). [15] 朱 亮.混杂纤维改性混凝土的力学性能与微观机理研究[D].西安:长安大学,2019. ZHU L. Study on mechanical properties and microscopic mechanism of hybrid fiber modified concrete[D]. Xi'an: Chang'an University, 2019 (in Chinese). [16] BEELDENS A, GEMERT D, SCHORN H, et al. From microstructure to macrostructure: an integrated model of structure formation in polymer-modified concrete[J]. Materials and Structures, 2005, 38(6): 601-607. |