硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (6): 1796-1807.
张翼, 朱艳梅, 任强, 蒋正武
收稿日期:
2021-04-01
修回日期:
2021-04-26
出版日期:
2021-06-15
发布日期:
2021-07-08
通讯作者:
蒋正武,博士,教授。 E-mail:jzhw@tongji.edu.cn
作者简介:
张 翼(1995—),男,博士研究生。主要从事3D打印水泥基材料方面的研究。E-mail:842805054@qq.com
基金资助:
ZHANG Yi, ZHU Yanmei, REN Qiang, JIANG Zhengwu
Received:
2021-04-01
Revised:
2021-04-26
Online:
2021-06-15
Published:
2021-07-08
摘要: 3D打印技术具有数字化、自动化、快速高效、无模、节省材料等特点,是一种低能耗、低排放的制造技术,也是制造业升级改革的关键技术。3D打印技术在传统建筑领域具有广阔的应用前景,能够极大缩短工程建设周期、提升建筑结构可设计性,它还是一种极端环境下极具潜力的施工技术。因此,3D打印建筑技术不仅受到科研工作者的青睐,更是得到国家的大力支持。本文系统评述了国内外基于水泥基材料的3D打印建筑技术的研究进展:首先介绍了基于水泥基材料的3D打印建筑技术的起源、发展及应用;然后从可打印性能、力学性能及耐久性能三个方面对3D打印水泥基材料研究进展进行了介绍;最后提出了关于3D打印建筑技术的思考与建议,并对其发展方向进行了展望。
中图分类号:
张翼, 朱艳梅, 任强, 蒋正武. 3D打印建筑技术及其水泥基材料研究进展评述[J]. 硅酸盐通报, 2021, 40(6): 1796-1807.
ZHANG Yi, ZHU Yanmei, REN Qiang, JIANG Zhengwu. Progress on 3D Printing Construction Technology and Its Cement-Based Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1796-1807.
[1] CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica, 2014, 93: 430-450. [2] KADING B, STRAUB J. Utilizing in situ resources and 3D printing structures for a manned Mars mission[J]. Acta Astronautica, 2015, 107: 317-326. [3] 马敬畏,蒋正武,苏宇峰.3D打印混凝土技术的发展与展望[J].混凝土世界,2014(7):41-46. MA J W, JIANG Z W, SU Y F. Development and prospect of 3D printing concrete technology[J]. China Concrete, 2014(7): 41-46 (in Chinese). [4] PEGNA J. Exploratory investigation of solid freeform construction[J]. Automation in Construction, 1997, 5(5): 427-437. [5] YU S W, DU H J, SANJAYAN J. Aggregate-bed 3D concrete printing with cement paste binder[J]. Cement and Concrete Research, 2020, 136: 106169. [6] LOWKE D, TALKE D, DRESSLER I, et al. Particle bed 3D printing by selective cement activation-applications, material and process technology[J]. Cement and Concrete Research, 2020, 134: 106077. [7] KHOSHNEVIS B, BUKKAPATNAM S, KWON H, et al. Experimental investigation of contour crafting using ceramics materials[J]. Rapid Prototyping Journal, 2001, 7(1): 32-42. [8] KHOSHNEVIS B. Contour crafting-state of development[C]//Solid Freeform Fabrication Proceedings, 1999: 743-750. [9] LIM S, LE T, WEBSTER J, et al. Fabricating construction components using layered manufacturing technology[C]//Global Innovation in Construction Conference. Loughborough University, 2009: 512-520. [10] CECCANTI F, DINI E, DE KESTELIER X, et al. 3D printing technology for a moon outpost exploiting lunar soil[J]. 61st International Astronautical Congress 2010, IAC 2010, 2010, 11: 8812-8820. [11] DINI E. Method for automatically producing a conglomerate structure and apparatus therefor: US20100207288[P]. 2010-08-19. [12] LIM S, BUSWELL R A, LE T T, et al. Developments in construction-scale additive manufacturing processes[J]. Automation in Construction, 2012, 21: 262-268. [13] HACK N, LAUER W V. Mesh-mould: robotically fabricated spatial meshes as reinforced concrete formwork[J]. Architectural Design, 2014, 84(3): 44-53. [14] PFÄNDLER P, WANGLER T, MATA-FALCÓN J, et al. Potentials of steel fibres for mesh mould elements[M]//RILEM Bookseries. Cham: Springer International Publishing, 2018: 207-216. [15] LLORET E, SHAHAB A R, LINUS M, et al. Complex concrete structures[J]. Computer-Aided Design, 2015, 60: 40-49. [16] LINDEMANN H, GERBERS R, IBRAHIM S, et al. Development of a shotcrete 3D-printing (SC3DP) technology for additive manufacturing of reinforced freeform concrete structures[C]//First RILEM International Conference on Concrete and Digital Fabrication-Digital Concrete, 2018: 287-298. [17] NEUDECKER S, BRUNS C, GERBERS R, et al. A new robotic spray technology for generative manufacturing of complex concrete structures without formwork[J]. Procedia CIRP, 2016, 43: 333-338. [18] BUSWELL R A, LEAL DE SILVA W R, JONES S Z, et al. 3D printing using concrete extrusion: a roadmap for research[J]. Cement and Concrete Research, 2018, 112: 37-49. [19] WU P, WANG J, WANG X Y. A critical review of the use of 3-D printing in the construction industry[J]. Automation in Construction, 2016, 68: 21-31. [20] ASPRONE D, AURICCHIO F, MENNA C, et al. 3D printing of reinforced concrete elements: technology and design approach[J]. Construction and Building Materials, 2018, 165: 218-231. [21] BOS F, AHMED Z, JUTINOV E, et al. Experimental exploration of metal cable as reinforcement in 3D printed concrete[J]. Materials, 2017, 10(11): 1314. [22] HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cement and Concrete Composites, 2017, 79: 62-70. [23] WANGLER T, ROUSSEL N, BOS F P, et al. Digital concrete: a review[J]. Cement and Concrete Research, 2019, 123: 105780. [24] ROUSSEL N. Rheological requirements for printable concretes[J]. Cement and Concrete Research, 2018, 112: 76-85. [25] DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete: technical, economic and environmental potentials[J]. Cement and Concrete Research, 2018, 112: 25-36. [26] ASPRONE D, MENNA C, BOS F P, et al. Rethinking reinforcement for digital fabrication with concrete[J]. Cement and Concrete Research, 2018, 112: 111-121. [27] WALLEVIK O H, WALLEVIK J E. Rheology as a tool in concrete science: the use of rheographs and workability boxes[J]. Cement and Concrete Research, 2011, 41(12): 1279-1288. [28] LE T T, AUSTIN S A, LIM S, et al. Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures, 2012, 45(8): 1221-1232. [29] LE T T, AUSTIN S A, LIM S, et al. Hardened properties of high-performance printing concrete[J]. Cement and Concrete Research, 2012, 42(3): 558-566. [30] ZAREIYAN B, KHOSHNEVIS B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete[J]. Automation in Construction, 2017, 83: 212-221. [31] HWANG D. Experimental study of full scale concrete wall construction using contour crafting[D]. Los Angeles: University of Southern California, 2005. [32] MENDOZA REALES O A, DUDA P, SILVA E C C M, et al. Nanosilica particles as structural buildup agents for 3D printing with Portland cement pastes[J]. Construction and Building Materials, 2019, 219: 91-100. [33] PANDA B, RUAN S Q, UNLUER C, et al. Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay[J]. Composites Part B: Engineering, 2019, 165: 75-83. [34] VAITKEVIIUS V, ERELIS E, KEREVIIUS V. Effect of ultra-sonic activation on early hydration process in 3D concrete printing technology[J]. Construction and Building Materials, 2018, 169: 354-363. [35] 蔺喜强,张 涛,霍 亮,等.水泥基建筑3D打印材料的制备及应用研究[J].混凝土,2016(6):141-144. LIN X Q, ZHANG T, HUO L, et al. Preparation and application of 3D printing materials in construction[J]. Concrete, 2016(6): 141-144 (in Chinese). [36] CHEN M X, LI L B, WANG J A, et al. Rheological parameters and building time of 3D printing sulphoaluminate cement paste modified by retarder and diatomite[J]. Construction and Building Materials, 2020, 234: 117391. [37] 范诗建,杜 骁,陈 兵.磷酸盐水泥在3D打印技术中的应用研究[J].新型建筑材料,2015,42(1):1-4. FAN S J, DU X, CHEN B. Research on application of magnesium phosphate cement in 3D printing[J]. New Building Materials, 2015, 42(1): 1-4 (in Chinese). [38] AKKINENI A R, LUO Y X, SCHUMACHER M, et al. 3D plotting of growth factor loaded calcium phosphate cement scaffolds[J]. Acta Biomaterialia, 2015, 27: 264-274. [39] COLOMBO P, CONTE A, ITALIANO A, et al. Binder with magnesic base and process for the additive production of manufactured items with such binder: US20170246760[P]. 2017-08-31. [40] ZHONG J, ZHOU G X, HE P G, et al. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide[J]. Carbon, 2017, 117: 421-426. [41] PERROT A, RANGEARD D, COURTEILLE E. 3D printing of earth-based materials: processing aspects[J]. Construction and Building Materials, 2018, 172: 670-676. [42] PANDA B, CHANDRA PAUL S, TAN M J. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material[J]. Materials Letters, 2017, 209: 146-149. [43] 张翠苗,杨红健,马学景.氯氧镁水泥的研究进展[J].硅酸盐通报,2014,33(1):117-121. ZHANG C M, YANG H J, MA X J. Research progress of magnesium oxychloride cement[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 117-121 (in Chinese). [44] 蔺喜强,李景芳,张 涛,等.用于3D打印技术的水泥基复合材料及其制备方法和用途:CN104310918A[P].2015-01-28. LIN X Q, LI J F, ZHANG T, et al. Cement based composites for 3D printing technology, preparation method and application: CN104310918A[P]. 2015-01-28 (in Chinese). [45] LIU Z X, LI M Y, WENG Y W, et al. Mixture design approach to optimize the rheological properties of the material used in 3D cementitious material printing[J]. Construction and Building Materials, 2019, 198: 245-255. [46] ZHANG C, HOU Z Y, CHEN C, et al. Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content[J]. Cement and Concrete Composites, 2019, 104: 103406. [47] ZHANG Y, ZHANG Y S, LIU G J, et al. Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263-271. [48] MALAEB Z, HACHEM H, TOURBAH A, et al. 3D concrete printing: machine and mix design[J]. International Journal of Civil Engineering, 2015, 6(6): 14-22. [49] MA G W, LI Z J, WANG L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613-627. [50] TAY Y W D, QIAN Y, TAN M J. Printability region for 3D concrete printing using slump and slump flow test[J]. Composites Part B: Engineering, 2019, 174: 106968. [51] OGURA H, NERELLA V, MECHTCHERINE V. Developing and testing of strain-hardening cement-based composites (SHCC) in the context of 3D-printing[J]. Materials, 2018, 11(8): 1375. [52] KAZEMIAN A, YUAN X, COCHRAN E, et al. Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture[J]. Construction and Building Materials, 2017, 145: 639-647. [53] ASHRAFI N, DUARTE J P, NAZARIAN S, et al. Evaluating the relationship between deposition and layer quality in large-scale additive manufacturing of concrete[J]. Virtual and Physical Prototyping, 2019, 14(2): 135-140. [54] 蒋正武,朱艳梅,张 翼.一种3D打印建筑砂浆建造性能评价装置及方法:CN110243678A[P].2019-09-17. JIANG Z W, ZHU Y M, ZHANG Y. A device and method for evaluating the buildability of 3D printing mortar: CN110243678B[P]. 2019-09-17 (in Chinese). [55] WOLFS R J M, BOS F P, SALET T A M. Correlation between destructive compression tests and non-destructive ultrasonic measurements on early age 3D printed concrete[J]. Construction and Building Materials, 2018, 181: 447-454. [56] PANDA B, LIM J H, TAN M J. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction[J]. Composites Part B: Engineering, 2019, 165: 563-571. [57] 朱艳梅,张 翼,蒋正武.羟丙基甲基纤维素对3D打印砂浆性能影响研究[J/OL].建筑材料学报:1-14[2021-03-31].http://kns.cnki.net/kcms/detail/31.1764.TU.20201028.1744.028.html. ZHU Y M, ZHANG Y, JIANG Z W. Effect of hydroxypropyl methylcellulose ether on properties of 3D printing mortar[J/OL]. Journal of Building Materials: 1-14 [2021-03-31]. http://kns.cnki.net/kcms/detail/31.1764.TU.20201028.1744.028.html (in Chinese). [58] YUAN Q, ZHOU D J, LI B Y, et al. Effect of mineral admixtures on the structural build-up of cement paste[J]. Construction and Building Materials, 2018, 160: 117-126. [59] ZHANG Y, JIANG Z W, ZHU Y M, et al. Effects of redispersible polymer powders on the structural build-up of 3D printing cement paste with and without hydroxypropyl methylcellulose[J]. Construction and Building Materials, 2021, 267: 120551. [60] KEITA E, BESSAIES-BEY H, ZUO W Q, et al. Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin[J]. Cement and Concrete Research, 2019, 123: 105787. [61] 刘致远,王振地,王 玲,等.3D打印水泥净浆层间拉伸强度及层间剪切强度[J].硅酸盐学报,2019,47(5):648-652. LIU Z Y, WANG Z D, WANG L, et al. Interlayer bond strength of 3D printing cement paste by cross-bonded method[J]. Journal of the Chinese Ceramic Society, 2019, 47(5): 648-652 (in Chinese). [62] WANG L, TIAN Z H, MA G W, et al. Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: experiments and molecular dynamics studies[J]. Cement and Concrete Composites, 2020, 110: 103571. [63] TAY Y W D, TING G H A, QIAN Y, et al. Time gap effect on bond strength of 3D-printed concrete[J]. Virtual and Physical Prototyping, 2019, 14(1): 104-113. [64] SANJAYAN J G, NEMATOLLAHI B, XIA M, et al. Effect of surface moisture on inter-layer strength of 3D printed concrete[J]. Construction and Building Materials, 2018, 172: 468-475. [65] PANDA B, PAUL S C, MOHAMED N A N, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108-116. [66] MARCHMENT T, SANJAYAN J, XIA M. Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification[J]. Materials & Design, 2019, 169: 107684. [67] HE L W, CHOW W T, LI H. Effects of interlayer notch and shear stress on interlayer strength of 3D printed cement paste[J]. Additive Manufacturing, 2020, 36: 101390. [68] NERELLA V N, HEMPEL S, MECHTCHERINE V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing[J]. Construction and Building Materials, 2019, 205: 586-601. [69] WOLFS R J M, BOS F P, SALET T A M. Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion[J]. Cement and Concrete Research, 2019, 119: 132-140. [70] PAUL S C, TAY Y W D, PANDA B, et al. Fresh and hardened properties of 3D printable cementitious materials for building and construction[J]. Archives of Civil and Mechanical Engineering, 2018, 18(1): 311-319. [71] ZAREIYAN B, KHOSHNEVIS B. Interlayer adhesion and strength of structures in contour crafting-effects of aggregate size, extrusion rate, and layer thickness[J]. Automation in Construction, 2017, 81: 112-121. [72] GENG Z F, SHE W, ZUO W Q, et al. Layer-interface properties in 3D printed concrete: dual hierarchical structure and micromechanical characterization[J]. Cement and Concrete Research, 2020, 138: 106220. [73] WENG Y W, LI M Y, ZHANG D, et al. Investigation of interlayer adhesion of 3D printable cementitious material from the aspect of printing process[J]. Cement and Concrete Research, 2021, 143: 106386. [74] NERELLA V N, HEMPEL S, MECHTCHERINE V. Micro-and macroscopic investigations on the interface between layers of 3D-printed cementitious elements[C]//Proceedings of the International Conference on Advances in Construction Materials and Systems, 2017: 3-8. [75] JÚLIO E N B S, BRANCO F A B, SILVA V D. Concrete-to-concrete bond strength. Influence of the roughness of the substrate surface[J]. Construction and Building Materials, 2004, 18(9): 675-681. [76] AUSTIN S, ROBINS P, PAN Y G. Tensile bond testing of concrete repairs[J]. Materials and Structures, 1995, 28(5): 249-259. [77] TALBOT C, PIGEON M, BEAUPRÉ D, et al. Influence of surface preparation on long-term bonding of shotcrete[J]. ACI Materials Journal, 1995, 91(6): 560-566. [78] HOSSEINI E, ZAKERTABRIZI M, KORAYEM A H, et al. A novel method to enhance the interlayer bonding of 3D printing concrete: an experimental and computational investigation[J]. Cement and Concrete Composites, 2019, 99: 112-119. [79] STÄHLI P, CUSTER R, MIER J G M. On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC[J]. Materials and Structures, 2008, 41(1): 189-196. [80] FERRARA L, OZYURT N, PRISCO M. High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow induced” fibre orientation[J]. Materials and Structures, 2011, 44(1): 109-128. [81] PAKRAVAN H R, LATIFI M, JAMSHIDI M. Hybrid short fiber reinforcement system in concrete: a review[J]. Construction and Building Materials, 2017, 142: 280-294. [82] BOS F P, BOSCO E, SALET T A M. Ductility of 3D printed concrete reinforced with short straight steel fibers[J]. Virtual and Physical Prototyping, 2019, 14(2): 160-174. [83] TEIXEIRA R S, TONOLI G H D, SANTOS S F, et al. Extruded cement based composites reinforced with sugar cane bagasse fibres[J]. Key Engineering Materials, 2012, 517: 450-457. [84] CHAVES FIGUEIREDO S, ROMERO RODRÍGUEZ C, AHMED Z Y, et al. An approach to develop printable strain hardening cementitious composites[J]. Materials & Design, 2019, 169: 107651. [85] SOLTAN D G, LI V C. A self-reinforced cementitious composite for building-scale 3D printing[J]. Cement and Concrete Composites, 2018, 90: 1-13. [86] WENG Y W, LI M Y, LIU Z X, et al. Printability and fire performance of a developed 3D printable fibre reinforced cementitious composites under elevated temperatures[J]. Virtual and Physical Prototyping, 2019, 14(3): 284-292. [87] WEGER D, LOWKE D, GEHLEN C, et al. Additive manufacturing of concrete elements using selective cement paste intrusion-effect of layer orientation on strength and durability[C]//Proceedings of RILEM 1st International Conference on Concrete and Digital Fabrication, Zurich, Switzerland, Sept., 2018: 10-12. [88] 刘致远.3D打印水泥基材料流变性能调控及力学性能表征[D].北京:中国建筑材料科学研究总院,2019. LIU Z Y. Rheological behavior control and mechanical properties characterization of 3D printing cement-based materials[D]. Beijing: China General Research Institute of Building Materials Science, 2019 (in Chinese). [89] VAN DER PUTTEN J, DE VOLDER M, VAN DEN HEEDE P, et al. 3D printing of concrete: the influence on chloride penetration[M]//RILEM Bookseries. Cham: Springer International Publishing, 2020: 500-507. [90] ZHANG Y, ZHANG Y S, YANG L, et al. Hardened properties and durability of large-scale 3D printed cement-based materials[J]. Materials and Structures, 2021, 54(1): 1-14. |
[1] | 王信刚, 李玉洁, 周镇. 环氧树脂修复水泥基材料离散微裂缝的渗透动力学研究[J]. 硅酸盐通报, 2021, 40(7): 2184-2190. |
[2] | 姚苏琴, 查文华, 刘新权, 季圣星, 何昌春, 余跃. 萍乡废弃煤矸石理化特性及热活化性能研究[J]. 硅酸盐通报, 2021, 40(7): 2280-2287. |
[3] | 范小春, 张雯静, 梁天福, 陈凯风. 回收轮胎钢纤维再生骨料混凝土基本力学性能试验研究[J]. 硅酸盐通报, 2021, 40(7): 2331-2340. |
[4] | 黄开林, 李书进, 臧旭航. 不同类型再生细骨料对保温混凝土力学性能的影响[J]. 硅酸盐通报, 2021, 40(7): 2341-2347. |
[5] | 阿拉腾沙嘎, 陈冠宏, 陈星. 磁场作用下冷冻铸造法制备仿生材料研究进展[J]. 硅酸盐通报, 2021, 40(7): 2348-2359. |
[6] | 张超, 邓智聪, 马蕾, 刘超, 陈宇宁, 汪智斌, 贾子健, 王香港, 贾鲁涛, 陈春, 孙正明, 张亚梅. 3D打印混凝土研究进展及其应用[J]. 硅酸盐通报, 2021, 40(6): 1769-1795. |
[7] | 刘俊力, 任杰, Jonathan Phuong Tran. 3D打印混凝土技术在澳大利亚的最近研究进展[J]. 硅酸盐通报, 2021, 40(6): 1808-1813. |
[8] | 王里, 李丹利, 叶珂含, 关景元, 冯舵. 水泥基复合材料3D可打印性的量化、优化及标准化[J]. 硅酸盐通报, 2021, 40(6): 1814-1820. |
[9] | 焦泽坤, 王栋民, 王启宝, 黄天勇, 王吉祥, 李林坤. 3D打印混凝土材料可打印性的影响因素与测试方法[J]. 硅酸盐通报, 2021, 40(6): 1821-1831. |
[10] | 孙凯利, 吴翔强, 蔺喜强, 李国友, 李新健, 孙志鹏. 混凝土3D打印材料及3D打印模板技术应用进展[J]. 硅酸盐通报, 2021, 40(6): 1832-1843. |
[11] | 王瑜玲, 王春福, 张飞燕. 3D打印混凝土性能要求及相关外加剂研究进展[J]. 硅酸盐通报, 2021, 40(6): 1844-1854. |
[12] | 金源, 徐嘉宾, 孙登田, 陈明旭, 黄永波, 芦令超, 程新. 纳米二氧化硅对白水泥基3D打印材料结构变形、流变及力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1855-1862. |
[13] | 徐嘉宾, 金源, 赵智慧, 陈明旭, 芦令超, 程新. 氧化铁红颜料对白水泥基3D打印材料流变及可打印性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1863-1869. |
[14] | 张超, 邓智聪, 汪智斌, 侯泽宇, 贾子健, 王香港, 贾鲁涛, 陈春, 孙正明, 张亚梅, 潘金龙. 纤维对3D打印混凝土打印性能与力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1870-1878. |
[15] | 曹乾菲, 崔冬, 史晓晗, 万逸, 左晓宝, 赖建中. 湿度变化对交替3D打印试件微结构及力学性能的影响研究[J]. 硅酸盐通报, 2021, 40(6): 1879-1888. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||