[1] 高丹盈,李 晗,杨 帆.聚丙烯-钢纤维增强高强混凝土高温性能[J].复合材料学报,2013,30(1):187-193. GAO D Y, LI H, YANG F. Performance of polypropylene-steel hybrid fiber reinforced concrete after being exposed to high temperature[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 187-193 (in Chinese). [2] 刘红彬,李康乐,鞠 杨,等.钢纤维活性粉末混凝土的高温爆裂试验研究[J].混凝土,2010(8):6-8. LIU H B, LI K L, JU Y, et al. Explosive spalling of steel fiber reinforced reactive powder concrete subject to high temperature[J]. Concrete, 2010(8): 6-8 (in Chinese). [3] 肖建庄,宋志文,张 枫.混凝土导热系数试验与分析[J].建筑材料学报,2010,13(1):17-21. XIAO J Z, SONG Z W, ZHANG F. An experimental study on thermal conductivity of concrete[J]. Journal of Building Materials, 2010, 13(1): 17-21 (in Chinese). [4] BAZANT Z P, KAPLAN M F. Concrete at high temperatures: material properties and mathematical models[J]. Applied Mechanics Reviews, 1996: 1-424. [5] KHALIQ W, KODUR V. Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures[J]. Cement and Concrete Research, 2011, 41(11): 1112-1122. [6] 李海艳,张博扬,李金书.钢纤维活性粉末混凝土高温热工性能研究[C].第十届全国结构抗火技术研讨会论文集,2019:195-201. LI H Y, ZHANG B Y, LI J S. Thermal properties of steel fiber-reinforced reactive powder concrete at elevated temperatures[C]. Proceedings of the 10th National Symposium on Structural Fire Resistance Technology, 2019: 195-201 (in Chinese). [7] SHEN L, REN Q W, CUSATIS G, et al. Numerical study on crack thermal resistance effect on thermo-mechanical coupled behavior of concrete structure at room temperature[J]. International Journal of Solids and Structures, 2020, 182/183: 141-155. [8] 沈 雷,任青文,张林飞,等.开裂混凝土有效导热系数研究:三维模拟与试验验证[J].水利学报,2017,48(6):689-701. SHEN L, REN Q W, ZHANG L F, et al. Study of effective thermal conductivity of cracked concrete: three-dimensional simulation and experimental validation[J]. Journal of Hydraulic Engineering, 2017, 48(6): 689-701 (in Chinese). [9] SHEN L, REN Q W, ZHANG L F, et al. Experimental and numerical study of effective thermal conductivity of cracked concrete[J]. Construction and Building Materials, 2017, 153: 55-68. [10] FU Y F, WONG Y L, TANG C A, et al. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures: part I: thermal cracking around single inclusion[J]. Cement and Concrete Composites, 2004, 26(2): 99-111. [11] FU Y F, WONG Y L, TANG C A, et al. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures: part II: thermal cracking around multiple inclusions[J]. Cement and Concrete Composites, 2004, 26(2): 113-126. [12] LI Y, TAN K H, YANG E H. Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature[J]. Cement and Concrete Composites, 2019, 96: 174-181. [13] 张伟平,童 菲,邢益善,等.混凝土导热系数的试验研究与预测模型[J].建筑材料学报,2015,18(2):183-189. ZHANG W P, TONG F, XING Y S, et al. Experimental study and prediction model of thermal conductivity of concrete[J]. Journal of Building Materials, 2015, 18(2): 183-189 (in Chinese). [14] 王立成,常 泽,鲍玖文.基于多相复合材料的混凝土导热系数预测模型[J].水利学报,2017,48(7):765-772. WANG L C, CHANG Z, BAO J W. Prediction model for the thermal conductivity of concrete based on its composite structure[J]. Journal of Hydraulic Engineering, 2017, 48(7): 765-772 (in Chinese). [15] 任青文,沈 雷,孙立国,等.开裂混凝土有效导热系数的细观数值研究[J].水利学报,2015,46(8):892-899. REN Q W, SHEN L, SUN L G, et al. Numerical study of the influence of cracks on effective thermal conductivity of concrete in meso-scale[J]. Journal of Hydraulic Engineering, 2015, 46(8): 892-899 (in Chinese). [16] 张林飞,李宗利,张国辉,等.不同温度下混凝土干燥过程试验初步研究[J].混凝土,2014(7):52-54. ZHANG L F, LI Z L, ZHANG G H, et al. Preliminary experimental invest igat ion of drying process of concrete under different temperature[J]. Concrete, 2014(7): 52-54 (in Chinese). [17] LIANG X W, WU C Q. Investigation on thermal conductivity of steel fiber reinforced concrete using mesoscale modeling[J]. International Journal of Thermophysics, 2018, 39(12): 1-19. [18] MAXWELL J C. A treatise on electricity and magnetism[J]. Nature, 1873, 7(182): 478-480. [19] FRICKE H. A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids[J]. Physical Review, 1924, 24(5): 575. [20] HAMILTON R L, CROSSER O K. Thermal conductivity of heterogeneous two-component systems[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187-191. [21] HASSELMAN D P H, JOHNSON L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials, 1987, 21(6): 508-515. [22] 王家俊.聚酰亚胺/氮化铝复合材料的制备与性能研究[D].杭州:浙江大学,2001. WANG J J. Preparation and properties of polyimide/aluminum nitride composites[D]. Hangzhou: Zhejiang University, 2001 (in Chinese). [23] BRUGGEMAN D. The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances[J]. Annals of Physics, 1935, 416: 636-664. [24] 杨世铭,陶文铨.传热学[M].4版.北京:高等教育出版社,2006. YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006 (in Chinese). [25] ZHU B F. Natural cooling of mass concrete[M]//Thermal Stresses and Temperature Control of Mass Concrete. Amsterdam: Elsevier, 2014: 83-103. [26] 张伟平,邢益善,顾祥林.基于细观复合材料的混凝土导热系数模型[J].结构工程师,2012,28(2):39-45. ZHANG W P, XING Y S, GU X L. Theoretical models of effective thermal conductivity of concrete based on composite materials in mesoscale[J]. Structural Engineers, 2012, 28(2): 39-45 (in Chinese). |