硅酸盐通报 ›› 2021, Vol. 40 ›› Issue (5): 1429-1140.
所属专题: 水泥混凝土
陈娇1, 于诚2,3, 慕儒1, 余鑫2,3
收稿日期:
2020-12-29
修回日期:
2021-02-07
出版日期:
2021-05-15
发布日期:
2021-06-07
通讯作者:
慕 儒,博士,教授级高工。E-mail:ru_mu@hotmail.com
作者简介:
陈 娇(1994—),女,硕士研究生。主要从事外加剂对水泥基材料性能影响的研究。E-mail:731051256@qq.com
基金资助:
CHEN Jiao1, YU Cheng2,3, MU Ru1, YU Xin2,3
Received:
2020-12-29
Revised:
2021-02-07
Online:
2021-05-15
Published:
2021-06-07
摘要: 随着纳米技术的不断发展,纳米材料逐步开始应用于传统混凝土材料中,以提高混凝土的各项服役性能。纳米水化硅酸钙(纳米C-S-H)是一种新型的早强纳米复合材料,可通过晶核效应加快水泥早期水化速率,显著提高水泥基材料的早期力学性能,从而提高施工效率,满足特殊施工要求。本文系统总结了纳米C-S-H的制备方法,及纳米C-S-H对水泥基材料早期和长期性能的影响规律,探讨了其对于水泥水化过程和水化产物的影响机制,其中重点介绍了采用聚合物分散纳米颗粒制备的C-S-H/PCE(聚羧酸型减水剂,简称PCE)纳米复合材料。
中图分类号:
陈娇, 于诚, 慕儒, 余鑫. 纳米水化硅酸钙的制备及对水泥水化影响的研究进展[J]. 硅酸盐通报, 2021, 40(5): 1429-1140.
CHEN Jiao, YU Cheng, MU Ru, YU Xin. Research Progress on Preparation of Nano Calcium Silicate Hydrate and Its Influence on Cement Hydration[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(5): 1429-1140.
[1] AÏTCIN P C, FLATT R J. Science and technology of concrete admixtures[M]. UK: Woodhead publishing, 2015. [2] PLANK J, SAKAI E, MIAO C W, et al. Chemical admixtures: chemistry, applications and their impact on concrete microstructure and durability[J]. Cement and Concrete Research, 2015, 78: 81-99. [3] 张 丰,白 银,蔡跃波,等.混凝土低温早强剂研究现状[J].材料导报,2017,31(21):106-113. ZHANG F, BAI Y, CAI Y B, et al. Research status of low temperature early strength agents for concrete[J]. Materials Review, 2017, 31(21): 106-113 (in Chinese). [4] MEHTA P K, MONTEIRO P J M. Concrete: microstructure, properties, and materials. [M]. 4th ed. New York: Mc Graw-Hill, 2014: 21-652. [5] 张 路,杨正宏,曲生华.硫酸钠对水泥硬化性能的影响[J].新型建筑材料,2014,41(2):28-30+56. ZHANG L, YANG Z H, QU S H. Influence of Na2SO4 on hardening properties of cement[J]. New Building Materials, 2014, 41(2): 28-30+56 (in Chinese). [6] SOBOLEV K, FERRADA GUTIÉRREZ M. How nanotechnology can change the concrete world[M]. Progress in Nanotechnology. Hoboken, USA: John Wiley & Sons, Inc., 2014: 117-120. [7] HANUS M J, HARRIS A T. Nanotechnology innovations for the construction industry[J]. Progress in Materials Science, 2013, 58(7): 1056-1102. [8] SINGH L P, ALI D, SHARMA U. Studies on optimization of silica nanoparticles dosage in cementitious system[J]. Cement and Concrete Composites, 2016, 70: 60-68. [9] SIDDIQUE R, KHAN M I. Supplementary cementing materials[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. [10] 吴福飞,董双快,赵本容,等.微米和纳米Al2O3对水泥基材料力学与耐久性的影响[J].长江科学院院报,2020,37(5):163-169. WU F F, DONG S K, ZHAO B R, et al. Effects of micron-Al2O3 and nano-Al2O3 on mechanical properties and durability of cement-based material[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(5): 163-169 (in Chinese). [11] 刘金涛.基于纳米材料的活性粉末混凝土及其基本力学性能研究[D].杭州:浙江大学,2016. LIU J T. The mechanical properties of nanomaterials reinforced reactive powder concrete[D]. Hangzhou: Zhejiang University, 2016 (in Chinese). [12] NAZARI A, RIAHI S. The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete[J]. Composites Part B: Engineering, 2011, 42(3): 570-578. [13] BERODIER E, SCRIVENER K. Understanding the filler effect on the nucleation and growth of C-S-H[J]. Journal of the American Ceramic Society, 2014, 97(12): 3764-3773. [14] SATO T, BEAUDOIN J. The Effect of nano-sized CaCO3 addition on the hydration of OPC containing high volumes of ground granulated blast-furnace slag[EB/OL]. [2006-09-11]. https://www.researchgate.net/publication/44092905.htm. [15] MATSCHEI T, LOTHENBACH B, GLASSER F P. The role of calcium carbonate in cement hydration[J]. Cement and Concrete Research, 2007, 37(4): 551-558. [16] NABER C, BELLMANN F, SOWOIDNICH T, et al. Alite dissolution and C-S-H precipitation rates during hydration[J]. Cement and Concrete Research, 2019, 115: 283-293. [17] 西德尼·明德斯,J.弗朗西斯·杨,戴维·达尔文,等.混凝土[M].吴科如,张 雄,姚 武,等译.第2版.北京:化学工业出版社,2005. SIDNEY M, FRANCIS Y J, DAVID D, et al. Concrete[M]. WU K R, ZHANG X, YAO W, et al, Transl. 2nd ed. Beijing: Chemical Industry Press, 2005 (in Chinese). [18] ALIZADEH R, RAKI L, MAKAR J M, et al. Hydration of tricalcium silicate in the presence of synthetic calcium-silicate-hydrate[J]. Journal of Materials Chemistry, 2009, 19(42): 7937. [19] OSTWALD W. Studien über die bildung und umwandlung fester körper[J]. Zeitschrift Für Physikalische Chemie, 1897, 22(1): 1897. [20] NICOLEAU L. Accelerated growth of calcium silicate hydrates: experiments and simulations[J]. Cement and Concrete Research, 2011, 41(12): 1339-1348. [21] THOMAS J J, JENNINGS H M, CHEN J J. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement[J]. The Journal of Physical Chemistry C, 2009, 113(11): 4327-4334. [22] SAITO F, MI G M, HANADA M. Mechanochemical synthesis of hydrated calcium silicates by room temperature grinding[J]. Solid State Ionics, 1997, 101/102/103: 37-43. [23] 徐 文,武小雷.钙硅比对水热合成水化硅酸钙实验的影响研究[J].硅酸盐通报,2018,37(4):1294-1298. XU W, WU X L. Influence research of the calcium silicon ratio on the synthetizing hydrated calcium silicate[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1294-1298 (in Chinese). [24] 彭小芹,何丽娟,刘艳萌.水热法制备水化硅酸钙纳米粉体[J].重庆大学学报(自然科学版),2005,28(5):59-62. PENG X Q, HE L J, LIU Y M. Hydrated calcium silicate with nm-order size manufactured by using dynamic autoclaved technology[J]. Journal of Chongqing University (Natural Science Edition), 2005, 28(5): 59-62 (in Chinese). [25] LAND G, STEPHAN D. The effect of synthesis conditions on the efficiency of C-S-H seeds to accelerate cement hydration[J]. Cement and Concrete Composites, 2018, 87: 73-78. [26] HUBLER M H, THOMAS J J, JENNINGS H M. Influence of nucleation seeding on the hydration kinetics and compressive strength of alkali activated slag paste[J]. Cement and Concrete Research, 2011, 41(8): 842-846. [27] KONG D Y, SU Y, DU X F, et al. Influence of nano-silica agglomeration on fresh properties of cement pastes[J]. Construction and Building Materials, 2013, 43: 557-562. [28] MATSUYAMA H, YOUNG J F. Effects of pH on precipitation of quasi-crystalline calcium silicate hydrate in aqueous solution[J]. Advances in Cement Research, 2000, 12(1): 29-33. [29] KUMAR A. Synthetic calcium silicate hydrates (dissertation)[Z]. Lausanne: École Polytechnique Fédérale de Lausanne (EPFL), 2017. [30] BLACK L, GARBEV K, GEE I. Surface carbonation of synthetic C-S-H samples: a comparison between fresh and aged C-S-H using X-ray photoelectron spectroscopy[J]. Cement and Concrete Research, 2008, 38(6): 745-750. [31] NORMAN MAYCOCK J, SKALNY J. Carbonation of hydrated calcium silicates[J]. Cement and Concrete Research, 1974, 4(1): 69-76. [32] LAND G, STEPHAN D. The synthesis of C-S-H seeds Methods, variables and their impact on the ability to accelerate cement hydration[C]//14th International Conference on the chemistry of cement (14th ICCC), 2015. [33] MULLIN J W. Crystallization[M]. 4th ed. Oxford: Butterworth-Heinemann, 2001. [34] DUJARDIN E, MANN S. Bio-inspired materials chemistry[J]. Advanced Materials, 2002, 14(11): 775-788. [35] PICKER A, NICOLEAU L, BURGHARD Z, et al. Mesocrystalline calcium silicate hydrate: a bioinspired route toward elastic concrete materials[J]. Science Advances, 2017, 3(11): e1701216. [36] YAO N, XIONG G X, YEUNG K L, et al. Ultrasonic synthesis of silica-alumina nanomaterials with controlled mesopore distribution without using surfactants[J]. Langmuir, 2002, 18(10): 4111-4117. [37] PLANK J, SCHÖNLEIN M, KANCHANASON V. Study on the early crystallization of calcium silicate hydrate (C-S-H) in the presence of polycarboxylate superplasticizers[J]. Journal of Organometallic Chemistry, 2018, 869: 227-232. [38] SCHÖNLEIN M, PLANK J. A TEM study on the very early crystallization of C-S-H in the presence of polycarboxylate superplasticizers: transformation from initial C-S-H globules to nanofoils[J]. Cement and Concrete Research, 2018, 106: 33-39. [39] SANCHEZ F, SOBOLEV K. Nanotechnology in concrete: a review[J]. Construction and Building Materials, 2010, 24(11): 2060-2071. [40] PACHECO-TORGAL F. Introduction to nanotechnology in eco-efficient construction[M]. Amsterdam: Elsevier, 2019: 1-9. [41] PHATTHARACHINDANUWONG C, HANSUPALAK N, PLANK J, et al. Template-assisted facile synthesis and characterization of hollow calcium silicate hydrate particles for use as reflective materials[J]. Materials Research Bulletin, 2018, 97: 343-350. [42] SUN J F, SHI H, QIAN B B, et al. Effects of synthetic C-S-H/PCE nanocomposites on early cement hydration[J]. Construction and Building Materials, 2017, 140: 282-292. [43] 杨 勇,冉千平,张建纲,等.纳米粒子的制备及其在水泥基材料中的性能研究[J].新型建筑材料,2015,42(7):3-6+13. YANG Y, RAN Q P, ZHANG J G, et al. Preparation of nanoparticles and their properties in cement-based materials[J]. New Building Materials, 2015, 42(7): 3-6+13 (in Chinese). [44] 陈友治,钟浩轩,殷伟淞,等.钙硅比对水化硅酸钙结构、zeta电势及减水剂吸附性能的影响分析[J].硅酸盐通报,2020,39(6):1798-1804. CHEN Y Z, ZHONG H X, YIN W S, et al. Effect of calcium-silicon ratio of calcium silicate hydrate on its structure, zeta potential and adsorption capacity of superplasticizer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1798-1804 (in Chinese). [45] LIU J T, LI Q H, XU S L. Influence of nanoparticles on fluidity and mechanical properties of cement mortar[J]. Construction and Building Materials, 2015, 101: 892-901. [46] NICOLEAU L. New calcium silicate hydrate network[J]. Journal of the Transportation Research Board, 2010, 2142(1): 42-51. [47] SZOSTAK B, GOLEWSKI G L. Effect of nano admixture of CSH on selected strength parameters of concrete including fly ash[J]. IOP Conference Series: Materials Science and Engineering, 2018, 416: 012105. [48] REICHENBACH K R, NICOLEAU L. Use of CSH suspensions in cemening wells: EP2561034[P]. 2019-05-22. [49] LAND G, STEPHAN D. Nanoparticles as accelerators for cement hydration[C]//Proceedings of hipermat 2012-3rd international symposium on UHPC and nanotechnology for construction materials. Germany: Kassel University Press, 2012. [50] 张朝阳,蔡 熠,孔祥明,等.纳米C-S-H对水泥水化、硬化浆体孔结构及混凝土强度的影响[J].硅酸盐学报,2019,47(5):585-593. ZHANG C Y, CAI Y, KONG X M, et al. Influence of nano C-S-H on cement hydration, pore structure of hardened cement pastes and strength of concrete[J]. Journal of the Chinese Ceramic Society, 2019, 47(5): 585-593 (in Chinese). [51] JIANG L F. Influences of nano-sized C-S-H particles on cement hydration of OPC in the presence of fly ash or polycarboxylate superplasticizer[C]//China Building Materials Academy, Chinese Ceramic Society. The 14th International Congress on the Chemistry of Cement, 2015. [52] KANCHANASON V, PLANK J. Effect of calcium silicate hydrate - polycarboxylate ether (C-S-H-PCE) nanocomposite as accelerating admixture on early strength enhancement of slag and calcined clay blended cements[J]. Cement and Concrete Research, 2019, 119: 44-50. [53] JOHN E, MATSCHEI T, STEPHAN D. Nucleation seeding with calcium silicate hydrate: a review[J]. Cement and Concrete Research, 2018, 113: 74-85. [54] LUDWIG H M, DRESSEL D. Synthetische calcium-silikat-hydrate in fertigteilbetonen[J]. Betontechnik, 2011: 46-50. [55] OWENS K, RUSSELL M I, DONNELLY G, et al. Use of nanocrystal seeding chemical admixture in improving Portland cement strength development: application for precast concrete industry[J]. Advances in Applied Ceramics, 2014, 113(8): 478-484. [56] 王伟山,黄德祥,邓最亮,等.新型晶核型早强剂的性能与早强机理分析[J].新型建筑材料,2016,43(5):9-13. WANG W S, HUANG D X, DENG Z L, et al. Performance and mechanism analysis of new type of crystal nucleus based hardening accelerator[J]. New Building Materials, 2016, 43(5): 9-13 (in Chinese). [57] 李遵云,杨 林,屠柳青,等.纳米水化硅酸钙对混凝土耐久性的影响[J].混凝土,2013(10):112-114+118. LI Z Y, YANG L, TU L Q, et al. Effect of nano-calcium silicate hydrate on durability of concrete[J]. Concrete, 2013(10): 112-114+118 (in Chinese). [58] 王 缘.基于纳米C-S-H-PCE的免蒸养混凝土制备技术[D].青岛:青岛理工大学,2020. WANG Y. Non-steam curing concrete production technique based on nano C-S-H-PCE[D]. Qingdao: Qingdao Tehcnology University, 2020 (in Chinese). [59] GEORGE L K. Tobermorite and related phases in the system CaO-SiO2-H2O[J]. ACI Journal Proceedings, 1955, 51(6): 989-1011. [60] TAYLOR H F W. Hydrated calcium silicates. Part I. Compound formation at ordinary temperatures[J]. Journal of the Chemical Society (Resumed), 1950: 3682. [61] 王子明,李慧群.聚羧酸系减水剂研究与应用新进展[J].混凝土世界,2012(8):50-56. WANG Z M, LI H Q. Research and application of polycarboxylate superplasticizer[J]. China Concrete, 2012(8): 50-56 (in Chinese). [62] KANCHANASON V, PLANK J. C-S-H-PCE nanocomposites for enhancement of early strength of portland cement[C]//China Building Materials Academy, Chinese Ceramic Society. The 14th International Congress on the Chemistry of Cement, 2015. [63] MATSUYAMA H, YOUNG J F. Chemistry of materials[Z]. 1999(11): 4-16. [64] BEAUDOIN J J, DRAMÉ H, RAKI L, et al. Formation and properties of C-S-H-PEG nano-structures[J]. Materials and Structures, 2009, 42(7): 1003-1014. [65] WANG F, KONG X M, WANG D M, et al. The effects of nano-C-S-H with different polymer stabilizers on early cement hydration[J]. Journal of the American Ceramic Society, 2019, 102(9): 5103-5116. [66] YAMADA K, TAKAHASHI T, HANEHARA S, et al. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer[J]. Cement and Concrete Research, 2000, 30(2): 197-207. [67] RAN Q P, SOMASUNDARAN P, MIAO C W, et al. Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions[J]. Journal of Colloid and Interface Science, 2009, 336(2): 624-633. [68] WINNEFELD F, BECKER S, PAKUSCH J, et al. Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems[J]. Cement and Concrete Composites, 2007, 29(4): 251-262. [69] FELEKOLU B, SARIKAHYA H. Effect of chemical structure of polycarboxylate-based superplasticizers on workability retention of self-compacting concrete[J]. Construction and Building Materials, 2008, 22(9): 1972-1980. [70] 中国建筑学会建材分会混凝土外加剂应用技术专业委员会.聚羧酸系高性能减水剂及其应用技术新进展[M].北京:北京理工大学出版社,2015. Specialized Committee of Concrete Admixture Application Technology, Building Materials Branch, Architectural Society of China. New progress of polycarboxylate superplasticizer and its application technology[M]. Beijing: Beijing Institute of Technology Press, 2011 (in Chinese). [71] PEDROSA H C, REALES O M, REIS V D, et al. Hydration of Portland cement accelerated by C-S-H seeds at different temperatures[J]. Cement and Concrete Research, 2020, 129: 105978. [72] 李 兰.有机无机纳米杂化材料对水泥水化的影响及机理研究[D].重庆:重庆大学,2020. LI L. Study on the influence and mechanism of nano organic and inorganic hybrid materials on cement hydration[D]. Chongqing: Chongqing University, 2020 (in Chinese). [73] 胡建伟,谢永江,刘子科,等.纳米C-S-H/PCE对硅酸盐-硫铝酸盐复合水泥凝结硬化的影响[J].土木与环境工程学报(中英文),2015,114(7):1-12 HU J W, XIE Y J, LIU Z K, et al. Effect of nano-C-S-H/PCE on the setting and hardening process of portland-sulphoaluminate composite cement[J]. Journal of Civil and Environmental Engineering, 2015, 114 (7): 1-12 (in Chinese). [74] NICOLEAU L. The acceleration of cement hydration by seeding: influence of the cement mineralogy[J]. Zkg International, 2013, 66(1): 40-49. [75] LAND G, STEPHAN D. Controlling cement hydration with nanoparticles[J]. Cement and Concrete Composites, 2015, 57: 64-67. [76] MAEAROTTO R, ZEMINIAN N, RONCERO J. An innovative accelerator for precast concrete crystal seeding to master the current challenges of the precast industry[J]. Betonwerk Fertigteil Technik, 2010, 76(1): 4-6, 8-9. [77] ARTIOLI G, VALENTINI L, DALCONI M C, et al. Imaging of nano-seeded nucleation in cement pastes by X-ray diffraction tomography[J]. International Journal of Materials Research, 2014, 105(7): 628-631. [78] THOMAS J J. A new approach to modeling the nucleation and growth kinetics of tricalcium silicate hydration[J]. Journal of the American Ceramic Society, 2007, 90(10): 3282-3288. [79] GARRAULT S. Study of C-S-H growth on C3S surface during its early hydration[J]. Materials and Structures, 2005, 38(278): 435-442. [80] BISHNOI S, SCRIVENER K L. Discussion of the paper “accelerated growth of calcium silicate hydrates” by Luc Nicoleau[J]. Cement and Concrete Research, 2012, 42(6): 878-880. [81] NICOLEAU L, NONAT A. A reply to the discussion “accelerated growth of calcium silicate hydrates: experiments and simulations” by S. Bishnoi and K. Scrivener[J]. Cement and Concrete Research, 2012, 42(6): 881-887. |
[1] | 张翼, 朱艳梅, 任强, 蒋正武. 3D打印建筑技术及其水泥基材料研究进展评述[J]. 硅酸盐通报, 2021, 40(6): 1796-1807. |
[2] | 金源, 徐嘉宾, 孙登田, 陈明旭, 黄永波, 芦令超, 程新. 纳米二氧化硅对白水泥基3D打印材料结构变形、流变及力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1855-1862. |
[3] | 徐嘉宾, 金源, 赵智慧, 陈明旭, 芦令超, 程新. 氧化铁红颜料对白水泥基3D打印材料流变及可打印性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1863-1869. |
[4] | 张超, 邓智聪, 汪智斌, 侯泽宇, 贾子健, 王香港, 贾鲁涛, 陈春, 孙正明, 张亚梅, 潘金龙. 纤维对3D打印混凝土打印性能与力学性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1870-1878. |
[5] | 何逸宁, 戴高尚, 吴甲民, 张洁, 潘明珠, 陈敬炎, 陈颖, 王永均, 张红星. 环氧树脂含量对激光选区烧结制备多孔煤系高岭土陶瓷性能的影响[J]. 硅酸盐通报, 2021, 40(6): 1950-1956. |
[6] | 明心昭, 刘志超, 王发洲, 胡曙光, 胡传林. Al2O3掺杂对γ-C2S碳化性能的影响[J]. 硅酸盐通报, 2021, 40(6): 2003-2010. |
[7] | 陈宇, 季军荣, 周洲, 武双磊, 陈胡星. 超硫酸盐水泥早期强度影响因素及提高途径[J]. 硅酸盐通报, 2021, 40(5): 1413-1419. |
[8] | 陈俊松, 王伟, 乔敏, 赵爽, 曾鲁平. 高岩温对喷射混凝土性能影响研究进展[J]. 硅酸盐通报, 2021, 40(5): 1441-1452. |
[9] | 严子伟, 刘黎, 孙晋峰, 卢豹, 祖庆贺, 臧军, 李德标, 侯贵华. 铝酸三钙和碳酸钙对硅酸盐水泥早期力学强度及凝结时间的协同作用研究[J]. 硅酸盐通报, 2021, 40(5): 1470-1476. |
[10] | 何威, 许吉航. 少层石墨烯对普通混凝土性能的影响[J]. 硅酸盐通报, 2021, 40(5): 1477-1488. |
[11] | 古悦, 王栋民, 房奎圳, 姚广, 王启宝, 张明, 孙睿, 吕南. 煤气化渣溶出特性及对水泥基材料的影响[J]. 硅酸盐通报, 2021, 40(5): 1579-1585. |
[12] | 边伟, 李亚龙, 高学凯, 荣亚鹏. 二灰稳定再生集料混合料力学及疲劳性能研究[J]. 硅酸盐通报, 2021, 40(5): 1638-1645. |
[13] | 郭立成, 任晃, 曾国东, 何禹忠, 吴超凡, 方杨, 韩庆奎, 蒋岳楼. 不同强度废旧混凝土水泥稳定再生材料路用性能研究[J]. 硅酸盐通报, 2021, 40(5): 1760-1766. |
[14] | 李祚, 姚淇耀, 朱圣焱, 郭新华, 彭林欣, 滕晓丹, 罗月静. 乌兰布和沙漠砂制备高延性水泥基复合材料的力学性能[J]. 硅酸盐通报, 2021, 40(4): 1103-1115. |
[15] | 陈丽, 周长顺, 蒋晨辉. 偏高岭土对活性粉末混凝土力学性能及微观结构的影响[J]. 硅酸盐通报, 2021, 40(4): 1162-1169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||