[1] HOVER K C. The influence of water on the performance of concrete[J]. Construction and Building Materials, 2011, 25(7): 3003-3013. [2] 郭邦文.水泥基材料水分传输过程的可视化表征与量化分析[D].深圳:深圳大学,2018. GUO B W. Visualization and quantification of water transport evolution in cementitious materials[D]. Shenzhen: Shenzhen University, 2018 (in Chinese). [3] 吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999. WU Z W, L H Z. High performance concrete[M]. Beijing: China Railway Press, 1999 (in Chinese). [4] POWERS T C. Structure and physical properties of hardened Portland cement paste[J]. Journal of the American Ceramic Society, 1958, 41(1): 1-6. [5] 郭剑飞.混凝土孔结构与强度关系理论研究[D].杭州:浙江大学,2004. GUO J F. The theoretical research of the pore structure and strength of concrete[D]. Hangzhou: Zhejiang University, 2004 (in Chinese). [6] 吴中伟,张鸿直.膨胀混凝土[M].北京:中国铁道出版社,1990. WU Z W, ZHANG H Z. Expansive concrete[M]. Beijing: China Railway Press, 1990 (in Chinese). [7] 近藤连一,大门正机.硬化水泥浆的相组成[M].北京:中国建筑工业出版社,1982. JINTENG L Y, DAMEN Z J. Phase composition of hardened cement slurry[M]. Beijing: China Construction Industry Press, 1982 (in Chinese). [8] 金珊珊.混凝土微观构造特征与宏观性能关系的研究[D].北京:北京工业大学,2010. JIN S S. Research on the relationship between microstructure characteristic and performance of concrete[D]. Beijing: Beijing University of Technology, 2010 (in Chinese). [9] 张 倩,董艳辉,童少青,等.核磁共振冷冻测孔法及其在页岩纳米孔隙表征的应用[J].科学通报,2016,61(21):2387-2394. ZHANG Q, DONG Y H, TONG S Q, et al. Nuclear magnetic resonance cryoporometry as a tool to measure pore size distribution of shale rock[J]. Chinese Science Bulletin, 2016, 61(21): 2387-2394 (in Chinese). [10] SMYL D, HALLAJI M, SEPPÄNEN A, et al. Three-dimensional electrical impedance tomography to monitor unsaturated moisture ingress in cement-based materials[J]. Transport in Porous Media, 2016, 115(1): 101-124. [11] VOSS A, HOSSEINI P, POUR-GHAZ M, et al. Three-dimensional electrical capacitance tomography: a tool for characterizing moisture transport properties of cement-based materials[J]. Materials & Design, 2019, 181: 107967. [12] 王小虎,彭 宇,吉克尼都,等.压汞后水泥基材料的孔隙结构变化[J].硅酸盐学报,2019,47(11):1521-1526. WANG X H, PENG Y, JI K, et al. MIP-induced pore structure alterations of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2019, 47(11): 1521-1526 (in Chinese). [13] ZHANG Z D, SCHERER G W. Supercritical drying of cementitious materials[J]. Cement and Concrete Research, 2017, 99: 137-154. [14] WU Z, WONG H S, BUENFELD N R. Influence of drying-induced microcracking and related size effects on mass transport properties of concrete[J]. Cement and Concrete Research, 2015, 68: 35-48. [15] SURYANTO B, SARAIREH D, KIM J, et al. Imaging water ingress into concrete using electrical resistance tomography[J]. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2017, 9(2): 109-118. [16] MITCHELL J, WEBBER J B W, STRANGE J H. Nuclear magnetic resonance cryoporometry[J]. Physics Reports, 2008, 461(1): 1-36. [17] 李易霖,张云峰,丛 琳,等.X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用:以大安油田扶余油层为例[J].吉林大学学报(地球科学版),2016,46(2):379-387. LI Y L, ZHANG Y F, CONG L, et al. Application of X-CT scanning technique in the characterization of micro pore structure of tight sandstone reservoir: an example from Fuyu oil layer in Daan oilfield[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2): 379-387 (in Chinese). [18] RÜBNER K, HOFFMANN D. Characterization of mineral building materials by mercury-intrusion porosimetry[J]. Particle & Particle Systems Characterization, 2006, 23(1): 20-28. [19] 郭耀华,丁红岩,张浦阳,等.基于压汞试验的SAP混凝土孔结构特征[J].建筑材料学报,2018,21(1):138-142. GUO Y H, DING H Y, ZHANG P Y, et al. Pore structure characteristics of SAP concrete based on mercury intrusion test[J]. Journal of Building Materials, 2018, 21(1): 138-142 (in Chinese). [20] BORTOLOTTI V, CAMAITI M, CASIERI C, et al. Water absorption kinetics in different wettability conditions studied at pore and sample scales in porous media by NMR with portable single-sided and laboratory imaging devices[J]. Journal of Magnetic Resonance, 2006, 181(2): 287-295. [21] 姚 武,佘安明,杨培强.水泥浆体中可蒸发水的1H核磁共振弛豫特征及状态演变[J].硅酸盐学报,2009,37(10):1602-1606. YAO W, SHE A M, YANG P Q. 1H-NMR relaxation and state evolvement of evaporable water in cement pastes[J]. Journal of the Chinese Ceramic Society, 2009, 37(10): 1602-1606 (in Chinese). [22] 佘安明,姚 武.基于低场核磁共振技术的水泥浆体孔结构与比表面积的原位表征[J].武汉理工大学学报,2013,35(10):11-15. SHE A M, YAO W. Characterization of microstructure and specific surface area of pores in cement paste by low field nuclear magnetic resonance technique[J]. Journal of Wuhan University of Technology, 2013, 35(10): 11-15 (in Chinese). [23] SHE A M, YAO W, YUAN W C. Evolution of distribution and content of water in cement paste by low field nuclear magnetic resonance[J]. Journal of Central South University, 2013, 20(4): 1109-1114. [24] JEHNG J Y, SPRAGUE D T, HALPERIN W P. Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing[J]. Magnetic Resonance Imaging, 1996, 14(7/8): 785-791. [25] ZHOU C S, REN F Z, WANG Z D, et al. Why permeability to water is anomalously lower than that to many other fluids for cement-based material?[J]. Cement and Concrete Research, 2017, 100: 373-384. [26] ZHOU C S, REN F Z, ZENG Q, et al. Pore-size resolved water vapor adsorption kinetics of white cement mortars as viewed from proton NMR relaxation[J]. Cement and Concrete Research, 2018, 105: 31-43. [27] BHATTACHARJA S, MOUKWA M, D’ORAZIO F, et al. Microstructure determination of cement pastes by NMR and conventional techniques[J]. Advanced Cement Based Materials, 1993, 1(2): 67-76. [28] 张 东,刘晓丽,王恩志.非均匀多孔介质等效渗透率的普适表达式[J].水文地质工程地质,2020,47(4):35-42. ZHANG D, LIU X L, WANG E Z. A universal expression of the equivalent permeability of heterogeneous porous media[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 35-42 (in Chinese). [29] 薛君玕,唐明述,楼宗汉.第七届国际水泥化学论文集[M].北京:中国建筑工业出版社,1985. XUE J G, TANG M S, LOU Z H. The 7th International cement chemistry proceedings[M]. Beijing: China Architecture & Building Press, 1985 (in Chinese). [30] 李淑进,赵铁军,吴科如.混凝土渗透性与微观结构关系的研究[J].混凝土与水泥制品,2004(2):6-8. LI S J, ZHAO T J, WU K R. Relationship between permeability and microstructure of concrete[J]. China Concrete and Cement Products, 2004(2): 6-8 (in Chinese). [31] 余红发,刘俊龙,张云升,等.高性能混凝土微观结构及其高耐久性形成机理[J].南京航空航天大学学报,2007,39(2):240-243. YU H F, LIU J L, ZHANG Y S, et al. Microstructure and durability forming mechanism of high performance concrete[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(2): 240-243 (in Chinese). [32] HALAMICKOVA P, DETWILER R J, BENTZ D P, et al. Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter[J]. Cement and Concrete Research, 1995, 25(4): 790-802. [33] 于 蕾,张 君,张金喜,等.水泥混凝土宏观性能与孔结构量化关系模型[J].哈尔滨工程大学学报,2015,36(11):1459-1464. YU L, ZHANG J, ZHANG J X, et al. Quantitative relation model between macro performance and pore structure of cement concrete[J]. Journal of Harbin Engineering University, 2015, 36(11): 1459-1464 (in Chinese). [34] 李永鑫,陈益民,贺行洋,等.粉煤灰-水泥浆体的孔体积分形维数及其与孔结构和强度的关系[J].硅酸盐学报,2003,31(8):774-779. LI Y X, CHEN Y M, HE X Y, et al. Pore volume fractal dimension of fly ash-cement paste and its relationship between the pore structure and strength[J]. Journal of the Chinese Ceramic Society, 2003, 31(8): 774-779 (in Chinese). [35] CHRISTENSEN B J, MASON T O, JENNINGS H M. Comparison of measured and calculated permeabilities for hardened cement pastes[J]. Cement and Concrete Research, 1996, 26(9): 1325-1334. [36] KATZ A J, THOMPSON A H. Prediction of rock electrical conductivity from mercury injection measurements[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B1): 599-607. [37] 李淑进.混凝土的渗透性与耐久性研究[D].青岛:青岛理工大学,2002. LI S J. Study on permeability and durability of concrete[D]. Qingdao: Qingdao Technology University, 2002 (in Chinese). [38] MARTYS N S, FERRARIS C F. Capillary transport in mortars and concrete[J]. Cement and Concrete Research, 1997, 27(5): 747-760. [39] 陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001. CHEN Z Q, WANG G X, XU G Y. Colloid and interface chemistry[M]. Beijing: Higher Education Press, 2001 (in Chinese). [40] WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273. [41] HANŽI L, ILIČ R. Relationship between liquid sorptivity and capillarity in concrete[J]. Cement and Concrete Research, 2003, 33(9): 1385-1388. [42] 刘 伟,邢 锋,谢友均.矿物掺合料对混凝土毛细吸水性的影响[J].深圳大学学报(理工版),2008,25(3):303-307. LIU W, XING F, XIE Y J. Influence of mineral admixture on the water sorptivity of concrete[J]. Journal of Shenzhen University Science and Engineering, 2008, 25(3): 303-307 (in Chinese). [43] HUANG Q, ZHU X H, LIU D S, et al. Modification of water absorption and pore structure of high-volume fly ash cement pastes by incorporating nanosilica[J]. Journal of Building Engineering, 2021, 33: 101638. [44] HALL C. Water sorptivity of mortars and concretes: a review[J]. Magazine of Concrete Research, 1989, 41(147): 51-61. [45] ZHOU C S, CHEN W, WANG W, et al. Indirect assessment of hydraulic diffusivity and permeability for unsaturated cement-based material from sorptivity[J]. Cement and Concrete Research, 2016, 82: 117-129. [46] HONG S X, YAO W Q, GUO B W, et al. Water distribution characteristics in cement paste with capillary absorption[J]. Construction and Building Materials, 2020, 240: 117767. [47] BENAVENTE D, LOCK P, ÁNGELES GARCÍA DEL CURA M, et al. Predicting the capillary imbibition of porous rocks from microstructure[J]. Transport in Porous Media, 2002, 49(1): 59-76. [48] ZHAO H T, DING J, HUANG Y Y, et al. Experimental analysis on the relationship between pore structure and capillary water absorption characteristics of cement-based materials[J]. Structural Concrete, 2019, 20(5): 1750-1762. [49] LIU X W, YANG J B, XIA K Q, et al. Capillary absorption dynamics for cementitious material considering water evaporation and tortuosity of capillary pores[J]. Advanced Materials Research, 2013, 821: 1213-1218. [50] ZHANG J C, LIN C, DONG B Q, et al. Inverse modeling deduction of pore distribution in cement materials from capillary absorption features[J]. Cement and Concrete Composites, 2020, 109: 103557. [51] SHE W, ZHANG Y S, MIAO C W, et al. Water transport in foam concrete: visualisation and numerical modelling[J]. Magazine of Concrete Research, 2019, 71(8): 1-39. [52] 张俊慧.混凝土凝胶孔中水分子传输分子动力学模拟[D].哈尔滨:哈尔滨工业大学,2017. ZHANG J H. Molecular dynamics simulation of water transportion in concrete gel pores[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). [53] 李登科.基于分子动力学理论水分和离子在水泥基材料中传输的研究[D].青岛:青岛理工大学,2018. LI D K. Research on the transport of water and ion in cement-based materials based on molecular dynamics[D]. Qingdao: Qingdao Technology University, 2018 (in Chinese). [54] 贾玉婷,赵铁军,侯东帅,等.非饱和及饱和状态下水化硅酸钙孔道中水分和离子传输的分子动力学研究[J].硅酸盐通报,2019,38(3):615-621. JIA Y T, ZHAO T J, HOU D S, et al. Molecular dynamics study on transport of water and ions in nanometer channel of calcium silicate hydrate unsaturated and saturated state[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 615-621 (in Chinese). [55] 徐小倩,李 涛,李海斌,等.基于分子动力学理论研究离子在C-A-S-H纳米孔道中的吸附与传输特性[J].硅酸盐通报,2019,38(3):737-742. XU X Q, LI T, LI H B, et al. Adsorption and transport properties of ions in C-A-S-H nanopores based on molecular dynamics theory[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 737-742 (in Chinese). [56] CAO Q Y, XU Y D, FANG J K, et al. Influence of pore size and fatigue loading on NaCl transport properties in C-S-H nanopores: a molecular dynamics simulation[J]. Materials, 2020, 13(3): 700. [57] DENG H Y, HE Z. Interactions of sodium chloride solution and calcium silicate hydrate with different calcium to silicon ratios: a molecular dynamics study[J]. Construction and Building Materials, 2021, 268: 121067. [58] HOU D S, YU J, LIU Q F, et al. Nanoscale insight on the epoxy-cement interface in salt solution: a molecular dynamics study[J]. Applied Surface Science, 2020, 509: 145322. |