硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 58-68.DOI: 10.16552/j.cnki.issn1001-1625.2025.0672
收稿日期:2025-07-11
修订日期:2025-08-22
出版日期:2026-01-20
发布日期:2026-02-10
作者简介:延永东(1982—),男,博士,副教授。主要从事可持续混凝土结构及其耐久性的研究。E-mail:yand@ujs.edu.cn
基金资助:
YAN Yongdong(
), WANG Zonghao, LU Chunhua, WU Keke, JIANG Cheng
Received:2025-07-11
Revised:2025-08-22
Published:2026-01-20
Online:2026-02-10
摘要:
为得出沿海盐雾环境下氯离子在带接缝混凝土内的侵蚀规律,本文考虑了接缝类型、侵蚀时间、材料组成等因素,开展了在盐雾环境下带接缝混凝土构件的氯离子侵蚀试验,测试了不同龄期下接缝处与非接缝处的氯离子质量分数。结果表明,在相同侵蚀时间下,接缝处的氯离子质量分数均大于非接缝处,其中直接湿接缝处的氯离子质量分数大于凿毛湿接缝处。随深度增加,混凝土内的氯离子质量分数先增大后减小,在距混凝土表面4 mm处最大。单掺结晶外加剂(CA)或复掺CA与UEA膨胀剂可以减小混凝土接缝处的氯离子质量分数,从而减弱接缝对混凝土耐久性的不利影响。非接缝处与接缝处的表观氯离子扩散系数随盐雾侵蚀时间的衰减规律一致,接缝处的表观氯离子扩散系数约为非接缝处的1.3倍。
中图分类号:
延永东, 王宗豪, 陆春华, 武珂珂, 江成. 盐雾环境下带接缝混凝土抗氯离子侵蚀性能研究[J]. 硅酸盐通报, 2026, 45(1): 58-68.
YAN Yongdong, WANG Zonghao, LU Chunhua, WU Keke, JIANG Cheng. Resistance to Chloride Ion Erosion of Jointed Concrete in Salt Spray Environment[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 58-68.
| Composition | Al2O3 | SiO2 | SO3 | CaO | Free lime | Fe3O4 | Alkali |
|---|---|---|---|---|---|---|---|
| Mass fraction/% | 24.2 | 45.1 | 2.1 | 5.6 | 0.9 | 2.5 | 1.2 |
表1 粉煤灰的主要化学组成
Table 1 Main chemical composition of fly ash
| Composition | Al2O3 | SiO2 | SO3 | CaO | Free lime | Fe3O4 | Alkali |
|---|---|---|---|---|---|---|---|
| Mass fraction/% | 24.2 | 45.1 | 2.1 | 5.6 | 0.9 | 2.5 | 1.2 |
| Material | Dosage range/% | Chloride ion content (per 100 g)/% | Impermeability pressure/MPa | Crystallization depth/cm | Restrained expansion rate/% | Alkali content (Na2Oeq)/% | Water absorption ratio/(g·g-1) | Residual monomer/% |
|---|---|---|---|---|---|---|---|---|
| CA | 0.8~2.0 | ≤0.1 | ≥1.5 | ≥30 | ||||
| CSA | 6~12 | ≤0.06 | ≥0.025 | ≤0.75 | ||||
| SAP | 0.4~0.8 | — | ≥200 | ≤0.1 |
表2 自愈合材料的技术参数
Table 2 Technical parameters of self-healing materials
| Material | Dosage range/% | Chloride ion content (per 100 g)/% | Impermeability pressure/MPa | Crystallization depth/cm | Restrained expansion rate/% | Alkali content (Na2Oeq)/% | Water absorption ratio/(g·g-1) | Residual monomer/% |
|---|---|---|---|---|---|---|---|---|
| CA | 0.8~2.0 | ≤0.1 | ≥1.5 | ≥30 | ||||
| CSA | 6~12 | ≤0.06 | ≥0.025 | ≤0.75 | ||||
| SAP | 0.4~0.8 | — | ≥200 | ≤0.1 |
| No. | Cement | Water | Fly ash | Self-healing material | Sand | Stone | SP | ||
|---|---|---|---|---|---|---|---|---|---|
| CA | SAP | CSA | |||||||
| CA-J-90 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-120 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-180 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-240 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-90 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-120 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-180 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-240 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-Z-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| 0-J-300 d | 405.00 | 136.80 | 45.00 | 0 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| SAP-J-300 d | 402.70 | 136.80 | 45.00 | 0 | 2.30 | 0 | 747.00 | 1 032.00 | 1.35 |
| CSA-J-300 d | 360.00 | 136.80 | 45.00 | 0 | 0 | 45.00 | 747.00 | 1 032.00 | 1.35 |
| CS-J-300 d | 393.70 | 136.80 | 45.00 | 9.00 | 2.30 | 0 | 747.00 | 1 032.00 | 1.35 |
| CC-J-300 d | 351.00 | 136.80 | 45.00 | 9.00 | 0 | 45.00 | 747.00 | 1 032.00 | 1.35 |
| 0-F-300 d | 405.00 | 136.80 | 45.00 | 0 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| SAP-F-300 d | 402.70 | 136.80 | 45.00 | 0 | 2.30 | 0 | 747.00 | 1 032.00 | 1.35 |
| CSA-F-300 d | 360.00 | 136.80 | 45.00 | 0 | 0 | 45.00 | 747.00 | 1 032.00 | 1.35 |
| CS-F-300 d | 393.70 | 136.80 | 45.00 | 9.00 | 2.30 | 0 | 747.00 | 1 032.00 | 1.35 |
| CC-F-300 d | 351.00 | 136.80 | 45.00 | 9.00 | 0 | 45.00 | 747.00 | 1 032.00 | 1.35 |
表3 试件编号及配合比 (kg·m-3)
Table 3 Specimen No. and mixing ratio
| No. | Cement | Water | Fly ash | Self-healing material | Sand | Stone | SP | ||
|---|---|---|---|---|---|---|---|---|---|
| CA | SAP | CSA | |||||||
| CA-J-90 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-120 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-180 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-240 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-90 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-120 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-180 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-240 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-Z-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| 0-J-300 d | 405.00 | 136.80 | 45.00 | 0 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-J-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| SAP-J-300 d | 402.70 | 136.80 | 45.00 | 0 | 2.30 | 0 | 747.00 | 1 032.00 | 1.35 |
| CSA-J-300 d | 360.00 | 136.80 | 45.00 | 0 | 0 | 45.00 | 747.00 | 1 032.00 | 1.35 |
| CS-J-300 d | 393.70 | 136.80 | 45.00 | 9.00 | 2.30 | 0 | 747.00 | 1 032.00 | 1.35 |
| CC-J-300 d | 351.00 | 136.80 | 45.00 | 9.00 | 0 | 45.00 | 747.00 | 1 032.00 | 1.35 |
| 0-F-300 d | 405.00 | 136.80 | 45.00 | 0 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| CA-F-300 d | 396.00 | 136.80 | 45.00 | 9.00 | 0 | 0 | 747.00 | 1 032.00 | 1.35 |
| SAP-F-300 d | 402.70 | 136.80 | 45.00 | 0 | 2.30 | 0 | 747.00 | 1 032.00 | 1.35 |
| CSA-F-300 d | 360.00 | 136.80 | 45.00 | 0 | 0 | 45.00 | 747.00 | 1 032.00 | 1.35 |
| CS-F-300 d | 393.70 | 136.80 | 45.00 | 9.00 | 2.30 | 0 | 747.00 | 1 032.00 | 1.35 |
| CC-F-300 d | 351.00 | 136.80 | 45.00 | 9.00 | 0 | 45.00 | 747.00 | 1 032.00 | 1.35 |
图8 不同侵蚀龄期下直接湿接缝与非接缝混凝土的氯离子质量分数分布
Fig.8 Distribution of chloride ion mass fraction in concrete with direct wet joint and non-joint under different erosion time
图9 掺加不同自愈合材料的混凝土在接缝与非接缝处的氯离子质量分数分布
Fig.9 Distribution of chloride ion mass fraction at joint and non-joint areas in concrete incorporating different self-healing materials
图12 混凝土非接缝处与直接湿接缝处的表观氯离子扩散系数随侵蚀时间的变化
Fig.12 Change of apparent chloride ion diffusion coefficient 预测值与试验值比较 at non-joint and direct wet joint areas in concrete
图13 直接湿接缝混凝土表观氯离子扩散系数
Fig.13 Comparative analysis of predicted versus measured apparent chloride ion diffusion coefficients in direct with erosion time wet jointed concrete
| [1] | 李立峰, 刘守苗, 吴文朋. 氯离子侵蚀效应对RC桥墩抗震性能的影响[J]. 建筑科学与工程学报, 2015, 32(5): 56-64. |
| LI L F, LIU S M, WU W P. Influence of chloride ion corrosion on seismic performance of reinforced concrete piers[J]. Journal of Architecture and Civil Engineering, 2015, 32(5): 56-64 (in Chinese). | |
| [2] | 修建得, 金祖权, 李 宁, 等. 海洋盐雾环境下混凝土中氯离子传输研究进展[J]. 硅酸盐通报, 2023, 42(3): 771-785. |
| XIU J D, JIN Z Q, LI N, et al. Research progress of chloride ion transport in concrete under marine salt spray environment[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 771-785 (in Chinese). | |
| [3] |
SU L, NIU D T, HUANG D G, et al. Chloride diffusion behavior and microstructure of basalt-polypropylene hybrid fiber reinforced concrete in salt spray environment[J]. Construction and Building Materials, 2022, 324: 126716.
DOI URL |
| [4] | 蒋一星. 荷载耦合作用下RC梁盐雾环境加速试验方法及损伤机理研究[D]. 重庆: 重庆交通大学, 2021. |
| JIANG Y X. Research on accelerated test method and damage mechanism of RC beams under coupled salt spray environment and loading[D]. Chongqing: Chongqing Jiaotong University, 2021 (in Chinese). | |
| [5] | 秦 卿, 郑山锁, 丁 莎. 盐雾环境下一字型短肢RC剪力墙抗震性能试验[J]. 工程力学, 2020, 37(6): 79-91. |
| QIN Q, ZHENG S S, DING S. Experimental study on aseismic behavior of short-pier rc shear walls in salt-fog environment[J]. Engineering Mechanics, 2020, 37(6): 79-91 (in Chinese). | |
| [6] | 李稳昌, 熊 峰, 冯 波, 等. 带接缝面钢筋混凝土梁抗剪性能研究[J]. 混凝土, 2023(12): 63-69. |
| LI W C, XIONG F, FENG B, et al. Experimental study on shear resisting performance of RC beam with interface[J]. Concrete, 2023(12): 63-69 (in Chinese). | |
| [7] |
LI G P, TIAN F L, REN C. Salt spray testing on the chloride resistance of jointed concrete[J]. Journal of Asian Architecture and Building Engineering, 2018, 17(1): 141-148.
DOI URL |
| [8] |
LI F M, LUO X Y. Interfacial zone effects of chloride penetration in precast concrete member joints[J]. Advances in Cement Research, 2019, 31(6): 279-289.
DOI URL |
| [9] | 梁显伟, 郭晓宇, 王海良, 等. 盐冻循环作用下混凝土桥梁接缝耐久性试验研究[J]. 公路, 2024, 69(3): 348-357. |
| LIANG X W, GUO X Y, WANG H L, et al. Experimental study on durability of concrete bridge joints under salt-freezing cycle[J]. Highway, 2024, 69(3): 348-357 (in Chinese). | |
| [10] | 延永东, 司有栋, 陆春华, 等. 氯离子在带接缝混凝土内的传输规律研究[J]. 建筑科学与工程学报, 2023, 40(1): 49-56. |
| YAN Y D, SI Y D, LU C H, et al. Research on transportation mechanism of chloride ion in concrete with joint[J]. Journal of Architecture and Civil Engineering, 2023, 40(1): 49-56 (in Chinese). | |
| [11] | 李国平, 胡 皓, 任 才, 等. 桥梁混凝土结构接缝的耐久性能[J]. 土木工程学报, 2018, 51(7): 98-103. |
| LI G P, HU H, REN C, et al. Study on durability of joints in concrete bridge structures[J]. China Civil Engineering Journal, 2018, 51(7): 98-103 (in Chinese). | |
| [12] | 李富民, 武晓辉, 陈志祥. 新老混凝土界面区氯离子传输特征与模型[J]. 东南大学学报(自然科学版), 2023, 53(3): 425-435. |
| LI F M, WU X H, CHEN Z X. Transport characteristics and models of chloride ions in the interfacial zone of new-old concrete[J]. Journal of Southeast University (Natural Science Edition), 2023, 53(3): 425-435 (in Chinese). | |
| [13] |
WANG X F, YANG Z H, FANG C, et al. Evaluation of the mechanical performance recovery of self-healing cementitious materials–its methods and future development: a review[J]. Construction and Building Materials, 2019, 212: 400-421.
DOI URL |
| [14] |
LAUCH K S, DESMETTRE C, CHARRON J P. Self-healing of concrete containing different admixtures under laboratory and long-term real outdoor expositions based on water permeability test[J]. Construction and Building Materials, 2022, 324: 126700.
DOI URL |
| [15] |
LAUCH K S, CHARRON J P, DESMETTRE C. Comprehensive evaluation of self-healing of concrete with different admixtures under laboratory and long-term outdoor expositions[J]. Journal of Building Engineering, 2022, 54: 104661.
DOI URL |
| [16] | 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2017. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test method of performance on ordinary fresh concrete: GB/T 50080—2016[S]. Beijing: China Architecture & Building Press, 2017 (in Chinese). | |
| [17] |
MA X W, LIU J H, WU Z M, et al. Effects of SAP on the properties and pore structure of high performance cement-based materials[J]. Construction and Building Materials, 2017, 131: 476-484.
DOI URL |
| [18] |
ZHENG X G, HAN M, LIU L L. Effect of superabsorbent polymer on the mechanical performance and microstructure of concrete[J]. Materials, 2021, 14(12): 3232.
DOI URL |
| [19] |
KALINOWSKI M, WOYCIECHOWSKI P. Chloride diffusion in concrete modified with polyacrylic superabsorbent polymer (SAP) hydrogel-the influence of the water-to-cement ratio and SAP-entrained water[J]. Materials, 2021, 14(15): 4064.
DOI URL |
| [20] |
DANG J T, ZHAO J, DU Z H. Effect of superabsorbent polymer on the properties of concrete[J]. Polymers, 2017, 9(12): 672.
DOI URL |
| [21] | 刘 鹏, 伍 军, 陈 颖, 等. 氯盐侵蚀混凝土表层氯离子对流区深度和时变性能[J]. 交通科学与工程, 2023, 39(5): 1-9+30. |
| LIU P, WU J, CHEN Y, et al. Study on the convective depth and time-varying properties of chloride convection zone on concrete surface[J]. Journal of Transport Science and Engineering, 2023, 39(5): 1-9+30 (in Chinese). | |
| [22] | 李建强, 金祖权, 陈永丰. 海洋环境混凝土对流区形成机理及氯离子迁移速率分析[J]. 混凝土, 2017(5): 55-58+62. |
| LI J Q, JIN Z Q, CHEN Y F. Analysis of chloride ion migration rate and formation mechanism of convection zone in marine concrete[J]. Concrete, 2017(5): 55-58+62 (in Chinese). | |
| [23] |
LIU P, YU Z, LU Z, et al. Predictive convection zone depth of chloride in concrete under chloride environment[J]. Cement and Concrete Composites, 2016, 72: 257-267.
DOI URL |
| [24] |
CHANG H L, MU S, XIE D Q, et al. Influence of pore structure and moisture distribution on chloride “maximum phenomenon” in surface layer of specimens exposed to cyclic drying-wetting condition[J]. Construction and Building Materials, 2017, 131: 16-30.
DOI URL |
| [25] |
HUANG D G, NIU D T, SU L, et al. Diffusion behavior of chloride in coral aggregate concrete in marine salt-spray environment[J]. Construction and Building Materials, 2022, 316: 125878.
DOI URL |
| [26] |
HU X Y, XIAO J, ZHANG Z D, et al. Effects of CCCW on properties of cement-based materials: a review[J]. Journal of Building Engineering, 2022, 50: 104184.
DOI URL |
| [27] |
REN G S, YAO B, HUANG H H, et al. Influence of sisal fibers on the mechanical performance of ultra-high performance concretes[J]. Construction and Building Materials, 2021, 286: 122958.
DOI URL |
| [28] |
HASHOLT M T, CHRISTENSEN K U, PADE C. Frost resistance of concrete with high contents of fly ash: a study on how hollow fly ash particles distort the air void analysis[J]. Cement and Concrete Research, 2019, 119: 102-112.
DOI URL |
| [29] |
JIN Z Q, CHANG H L, DU F Y, et al. Influence of SAP on the chloride penetration and corrosion behavior of steel bar in concrete[J]. Corrosion Science, 2020, 171: 108714.
DOI URL |
| [30] |
VILLAGRÁN-ZACCARDI Y A, ANDRADE C. Chloride ingress rate and threshold content, as determined by the ‘Integral’ test method, in concrete with several w/c ratios in saturated and unsaturated conditions[J]. Developments in the Built Environment, 2021, 8: 100062.
DOI URL |
| [31] | 杨玉龙, 单联飞, 庄智杰, 等. 海洋潮汐区混凝土氯离子扩散系数相似性分析[J]. 材料导报, 2025, 39(18): 77-82. |
| YANG Y L, SHAN L F, ZHUANG Z J, et al. Similarity analysis of chloride diffusion coefficient of concrete exposed to marine tidal zone[J]. Materials Reports, 2025, 39(18): 77-82 (in Chinese). | |
| [32] | 鲍玖文, 魏佳楠, 张 鹏, 等. 海洋环境下混凝土抗氯离子侵蚀的相似性研究进展[J]. 硅酸盐学报, 2020, 48(5): 689-704. |
| BAO J W, WEI J N, ZHANG P, et al. Research progress of similarity of resistance to chloride ingress into concrete exposed to marine environment[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 689-704 (in Chinese). | |
| [33] | 施跃毅, 郭增伟, 郭瑞琦. 氯离子扩散系数快速测试方法综述[J]. 硅酸盐通报, 2021, 40(1): 1-12. |
| SHI Y Y, GUO Z W, GUO R Q. Review of rapid test methods for chloride diffusion coefficient[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 1-12 (in Chinese). | |
| [34] | 周 莹, 蔡景顺, 石 亮. 自然扩散法测试混凝土氯离子扩散系数[J]. 混凝土, 2020(9): 23-26. |
| ZHOU Y, CAI J S, SHI L. Natural diffusion method for testing chloride ion diffusion coefficient of concrete[J]. Concrete, 2020(9): 23-26 (in Chinese). | |
| [35] |
XIA J, CHEN K Y, HU S T, et al. Experimental and numerical study on the microstructure and chloride ion transport behavior of concrete-to-concrete interface[J]. Construction and Building Materials, 2023, 367: 130317.
DOI URL |
| [1] | 修建得, 金祖权, 李宁, 侯保荣. 海洋盐雾环境下混凝土中氯离子传输研究进展[J]. 硅酸盐通报, 2023, 42(3): 771-785. |
| [2] | 韦建刚, 陈荣, 黄伟, 陈镇东, 陈宝春, 陈培标, 朱卫东. 静水压力下超高性能混凝土的抗氯离子渗透性能[J]. 硅酸盐通报, 2022, 41(8): 2706-2715. |
| [3] | 陈妤, 李创创, 李国浩, 董凯, 刘荣桂, 陆春华. 氧化石墨烯改性水泥砂浆抗氯离子渗透性能[J]. 硅酸盐通报, 2022, 41(5): 1539-1546. |
| [4] | 朱海威;余红发;麻海燕;翁智财;冯坚. 硅灰混凝土表观氯离子扩散系数影响因素的研究[J]. 硅酸盐通报, 2015, 34(10): 2753-2756. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||