硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 112-122.DOI: 10.16552/j.cnki.issn1001-1625.2025.0735
邱军付1(
), 张瑞峰1, 王正华1, 舒春雪1, 张佳阳1, 贺鑫鑫2, 李雨洋1
收稿日期:2025-07-24
修订日期:2025-08-18
出版日期:2026-01-20
发布日期:2026-02-10
作者简介:邱军付(1977—),男,博士,高级工程师。主要从事绿色建材开发和固废资源化利用的研究。E-mail: 82324545@qq.com
基金资助:
QIU Junfu1(
), ZHANG Ruifeng1, WANG Zhenghua1, SHU Chunxue1, ZHANG Jiayang1, HE Xinxin2, LI Yuyang1
Received:2025-07-24
Revised:2025-08-18
Published:2026-01-20
Online:2026-02-10
摘要:
为探究氧硫比和水硫比对改性硫氧镁基胶凝材料宏观性能的影响及机理,通过X射线荧光分析(XRF)、水化热分析、X射线衍射分析(XRD)和扫描电子显微镜(SEM)等手段,研究原料氧硫比M=n(α-MgO)∶n(MgSO4)和水硫比H=n(H2O)∶n(MgSO4)对改性硫氧镁基胶凝材料水化产物、力学性能、耐水性等性能的影响规律。结果表明:固定水硫比为20∶1、氧硫比为11∶1时,硫氧镁基胶凝材料的力学性能最优;固定氧硫比为8∶1,当水硫比为18∶1时,硫氧镁基胶凝材料的力学性能最优。随着氧硫比的增加,水化反应产生5·1·7相晶体的质量分数在80%以上,针棒状5·1·7相晶体交织成网状结构,和体系中未反应的MgO一同填充样品孔隙,使样品结构更加密实,改善了体系的力学性能,氧硫比为11∶1的硫氧镁基胶凝材料相较于氧硫比为7∶1的硫氧镁基胶凝材料28 d抗折强度提升51.1%,28 d抗压强度提升34.8%;水硫比的增加会导致体系中原本起到填充作用的MgO水化生成Mg(OH)2,产生体积膨胀,导致硫氧镁基胶凝材料力学性能降低。
中图分类号:
邱军付, 张瑞峰, 王正华, 舒春雪, 张佳阳, 贺鑫鑫, 李雨洋. 原料摩尔比对改性硫氧镁基胶凝材料宏观性能的影响[J]. 硅酸盐通报, 2026, 45(1): 112-122.
QIU Junfu, ZHANG Ruifeng, WANG Zhenghua, SHU Chunxue, ZHANG Jiayang, HE Xinxin, LI Yuyang. Effect of Raw Material Molar Ratio on Macro-Properties of Modified Magnesium Oxysulfate Cementitious[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 112-122.
| Material | Mass fraction/% | |||||||
|---|---|---|---|---|---|---|---|---|
| MgO | SiO2 | CaO | Al2O3 | Fe2O3 | Other | α-MgO | Loss on ignition | |
| MgO | 87.51 | 6.71 | 3.70 | 0.74 | 0.70 | 0.64 | 62.80 | 6.75 |
| T/CECS 10397—2024 | ≥50.00 | f-CaO≤5.00 | ≥30.00 | ≤25.00 | ||||
表1 原材料的化学组成
Table 1 Chemical composition of raw materials
| Material | Mass fraction/% | |||||||
|---|---|---|---|---|---|---|---|---|
| MgO | SiO2 | CaO | Al2O3 | Fe2O3 | Other | α-MgO | Loss on ignition | |
| MgO | 87.51 | 6.71 | 3.70 | 0.74 | 0.70 | 0.64 | 62.80 | 6.75 |
| T/CECS 10397—2024 | ≥50.00 | f-CaO≤5.00 | ≥30.00 | ≤25.00 | ||||
| Sample | Content/g | ||||
|---|---|---|---|---|---|
| MgO | MgSO4·7H2O | H2O | Citric acid | Standard sand | |
| M8H19 | 450.0 | 217.2 | 190.8 | 2.25 | 1 350 |
| M8H18 | 450.0 | 217.2 | 174.9 | 2.25 | 1 350 |
| M8H17 | 450.0 | 217.2 | 159.0 | 2.25 | 1 350 |
| M11H20 | 450.0 | 158.0 | 150.3 | 2.25 | 1 350 |
| M10H20 | 450.0 | 173.8 | 165.3 | 2.25 | 1 350 |
| M9H20 | 450.0 | 193.1 | 183.7 | 2.25 | 1 350 |
| M8H20 | 450.0 | 217.2 | 206.7 | 2.25 | 1 350 |
| M7H20 | 450.0 | 248.3 | 236.2 | 2.25 | 1 350 |
表2 不同氧硫比和水硫比硫氧镁基胶凝材料的配合比
Table 2 Mix proportion of modified magnesium oxysulfate cementitious with different oxygen-sulfur ratios and water-sulfur ratios
| Sample | Content/g | ||||
|---|---|---|---|---|---|
| MgO | MgSO4·7H2O | H2O | Citric acid | Standard sand | |
| M8H19 | 450.0 | 217.2 | 190.8 | 2.25 | 1 350 |
| M8H18 | 450.0 | 217.2 | 174.9 | 2.25 | 1 350 |
| M8H17 | 450.0 | 217.2 | 159.0 | 2.25 | 1 350 |
| M11H20 | 450.0 | 158.0 | 150.3 | 2.25 | 1 350 |
| M10H20 | 450.0 | 173.8 | 165.3 | 2.25 | 1 350 |
| M9H20 | 450.0 | 193.1 | 183.7 | 2.25 | 1 350 |
| M8H20 | 450.0 | 217.2 | 206.7 | 2.25 | 1 350 |
| M7H20 | 450.0 | 248.3 | 236.2 | 2.25 | 1 350 |
| Sample | Mass fraction/% | Rwp/% | ||||
|---|---|---|---|---|---|---|
| 5·1·7 phase | Mg(OH)2 | MgO | SiO2 | MgCO3 | ||
| M8H17 | 93.9 | 0 | 4.7 | 1.0 | 0.4 | 7.26 |
| M8H18 | 91.8 | 0.7 | 4.8 | 1.0 | 1.7 | 5.13 |
| M8H19 | 90.8 | 2.8 | 2.4 | 1.8 | 2.2 | 8.85 |
| M8H20 | 89.9 | 4.9 | 2.4 | 0.8 | 2.0 | 5.86 |
表3 不同水硫比硫氧镁基胶凝材料净浆半定量分析
Table 3 Semi-quantitative analysis of magnesium oxysulfate cementitious paste with different water-sulfur ratios
| Sample | Mass fraction/% | Rwp/% | ||||
|---|---|---|---|---|---|---|
| 5·1·7 phase | Mg(OH)2 | MgO | SiO2 | MgCO3 | ||
| M8H17 | 93.9 | 0 | 4.7 | 1.0 | 0.4 | 7.26 |
| M8H18 | 91.8 | 0.7 | 4.8 | 1.0 | 1.7 | 5.13 |
| M8H19 | 90.8 | 2.8 | 2.4 | 1.8 | 2.2 | 8.85 |
| M8H20 | 89.9 | 4.9 | 2.4 | 0.8 | 2.0 | 5.86 |
| Sample | Mass fraction/% | Rwp/% | ||||
|---|---|---|---|---|---|---|
| 5·1·7 phase | Mg(OH)2 | MgO | SiO2 | MgCO3 | ||
| M7H20 | 97.2 | 0 | 1.0 | 0.4 | 1.4 | 8.92 |
| M8H20 | 89.9 | 4.9 | 2.4 | 0.8 | 2.0 | 5.86 |
| M9H20 | 86.8 | 5.6 | 4.8 | 1.2 | 1.6 | 7.18 |
| M10H20 | 85.8 | 6.3 | 6.1 | 0.8 | 1.0 | 6.16 |
| M11H20 | 81.5 | 7.1 | 8.7 | 1.2 | 1.5 | 5.44 |
表4 不同氧硫比硫氧镁基胶凝材料净浆半定量分析
Table 4 Semi-quantitative analysis of magnesium oxysulfate cementitious paste with different oxygen-sulfur ratios
| Sample | Mass fraction/% | Rwp/% | ||||
|---|---|---|---|---|---|---|
| 5·1·7 phase | Mg(OH)2 | MgO | SiO2 | MgCO3 | ||
| M7H20 | 97.2 | 0 | 1.0 | 0.4 | 1.4 | 8.92 |
| M8H20 | 89.9 | 4.9 | 2.4 | 0.8 | 2.0 | 5.86 |
| M9H20 | 86.8 | 5.6 | 4.8 | 1.2 | 1.6 | 7.18 |
| M10H20 | 85.8 | 6.3 | 6.1 | 0.8 | 1.0 | 6.16 |
| M11H20 | 81.5 | 7.1 | 8.7 | 1.2 | 1.5 | 5.44 |
| [1] | QIN L, GAO X J, LI W G, et al. Modification of magnesium oxysulfate cement by incorporating weak acids[J]. Journal of Materials in Civil Engineering, 2018, 30(9): 04018209. |
| [2] | 韩 猛. 大掺量钢渣硫氧镁水泥性能研究[D]. 鞍山: 辽宁科技大学, 2023. |
| HAN M. Study on properties of magnesium oxysulfate cement with high content of steel slag[D]. Anshan: University of Science and Technology Liaoning, 2023 (in Chinese). | |
| [3] |
WU C Y, ZHANG H F, YU H F. Preparation and properties of modified magnesium oxysulfate cement derived from waste sulfuric acid[J]. Advances in Cement Research, 2016, 28(3): 178-188.
DOI URL |
| [4] | WU C Y, YU H F, DONG J M, et al. Effects of material ratio, fly ash, and citric acid on magnesium oxysulfate cement[J]. ACI Materials Journal, 2014, 111(3): 291-297. |
| [5] | 张晓闯, 陈 波, 王雄锋, 等. 改性剂和矿物掺合料对硫氧镁水泥耐水性的影响研究进展[J]. 水利水电技术(中英文), 2023, 54(8): 188-196. |
| ZHANG X C, CHEN B, WANG X F, et al. Study on effect of modifier and mineral admixture on water resistance of magnesium oxysulfate cement-a short review[J]. Water Resources and Hydropower Engineering, 2023, 54(8): 188-196 (in Chinese). | |
| [6] | ZHANG N, YU H F, MA H Y, et al. The phase composition of the MgO-MgSO4-H2O system and mechanisms of chemical additives[J]. Composites Part B: Engineering, 2022, 247: 110328. |
| [7] | 刘冲昊, 岳雪涛, 翟庆振, 等. 活性MgO含量对改性硫氧镁水泥强度的影响及机理分析[J]. 混凝土与水泥制品, 2023(7): 18-22. |
| LIU C H, YUE X T, ZHAI Q Z, et al. Effect and mechanism analysis of active MgO content on the strength of modified magnesium thioxide cement[J]. China Concrete and Cement Products, 2023(7): 18-22 (in Chinese). | |
| [8] |
LI Z G, JI Z S. Effect of molar ratios on compressive strength of modified magnesium oxysulfate cement[J]. International Journal of Hybrid Information Technology, 2015, 8(6): 87-94.
DOI URL |
| [9] | 王爱国, 楚英杰, 徐海燕, 等. 碱式硫酸镁水泥的研究进展及性能提升技术[J]. 材料导报, 2020, 34(13): 13091-13099. |
| WANG A G, CHU Y J, XU H Y, et al. Research progress and performance improvement technology of basic magnesium sulfate cement[J]. Materials Reports, 2020, 34(13): 13091-13099 (in Chinese). | |
| [10] | 吴成友, 苗 梦, 余红发. MgO活性和摩尔比对碱式硫酸镁水泥强度的影响机理[J]. 建筑材料学报, 2022, 25(4): 360-366. |
| WU C Y, MIAO M, YU H F. Effect of MgO activity and molar ratio on strength of basic magnesium sulfate cement and its mechanism[J]. Journal of Building Materials, 2022, 25(4): 360-366 (in Chinese). | |
| [11] | 中国工程建设标准化协会. 硫氧镁基胶凝材料: T/ CECS 10397—2024[S]. 北京: 中国标准出版社, 2024. |
| China Engineering Construction Standardization Association. Magnesium sulfate-based cementitious materials: T/ CECS 10397—2024[S]. Beijing: China Standards Press, 2024 (in Chinese). | |
| [12] | 国家市场监督管理总局, 国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. |
| State Administration for Market Regulation, National Standardization Administration. Strength test method of cement sand (ISO method): GB/T 17671—2021[S]. Beijing: China Standard Press, 2021 (in Chinese). | |
| [13] | 国家市场监督管理总局, 国家标准化管理委员会. 建筑保温砂浆: GB/T 20473—2021[S]. 北京: 中国标准出版社, 2021. |
| State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Building thermal insulation mortar: GB/T 20473—2021[S]. Beijing: China Standards Press, 2021 (in Chinese). | |
| [14] | 吴成友. 碱式硫酸镁水泥的基本理论及其在土木工程中的应用技术研究[D]. 西宁: 中国科学院研究生院(青海盐湖研究所), 2014. |
| WU C Y. Basic theory of basic magnesium sulfate cement and its application technology in civil engineering[D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2014 (in Chinese). | |
| [15] | 郑宇浩. 硫氧镁水泥改性及耐久性的热力学机理研究[D]. 南京: 东南大学, 2023. |
| ZHENG Y H. Study on thermodynamic mechanism of modification and durability of magnesium oxysulfate cement[D]. Nanjing: Southeast University, 2023 (in Chinese). | |
| [16] | INDIA B C U, KRISHNA V, KUMAR R. Water to cement ratio: a simple and effective approach to control plastic and drying shrinkage in concrete[C]// Sustainable Construction Materials and Technologies (SCMT). Coventry University, 2016: 1389-1396. |
| [17] | 姜黎黎, 刘江武, 董文俊, 等. 柠檬酸掺量对硫氧镁水泥耐水性的影响[J]. 硅酸盐通报, 2016, 35(12): 4093-4096. |
| JIANG L L, LIU J W, DONG W J, et al. Influence of citric acid addition on water resistance of magnesium oxysulfate cement[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4093-4096 (in Chinese). | |
| [18] |
GUO T, WANG H F, YANG H J, et al. The mechanical properties of magnesium oxysulfate cement enhanced with 517 phase magnesium oxysulfate whiskers[J]. Construction and Building Materials, 2017, 150: 844-850.
DOI URL |
| [19] | 巴明芳, 马哲洋, 纪璐鑫, 等. 不同摩尔比对改性硫氧镁水泥基材料力学性能、变形行为的影响及机理研究[J/OL]. 建筑材料学报, 1-14 ( 2024-01-16) [ 2025-08-10]. https://link.cnki.net/urlid/31.1764.TU.20240116.1349.002. |
| BA M F, MA Z Y, JI L X, et al. Study on the influence of different molar ratios on mechanical properties, deformation behavior and mechanism of modified magnesium oxysulfate cement-based materials[J/OL]. Journal of Building Materials, 1-14 ( 2024-01-16) [ 2025-08-10]. https://link.cnki.net/urlid/31.1764.TU.20240116.1349.002 (in Chinese). | |
| [20] | DU C. A review of magnesium oxide in concrete[J]. Concrete international, 2005, 27(12): 45-50. |
| [21] | 郑安然, 詹炳根, 杨咏三. 氧硫比与水硫比对硫氧镁胶凝材料性能的影响[J]. 合肥工业大学学报(自然科学版), 2020, 43(10): 1378-1383. |
| ZHENG A R, ZHAN B G, YANG Y S. Influence of mass ratio of MgO to MgSO4 and H2O to MgSO4 on the properties of magnesium oxysulfate cementitious material[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(10): 1378-1383 (in Chinese). | |
| [22] |
WANG N, YU H F, BI W L, et al. Effects of sodium citrate and citric acid on the properties of magnesium oxysulfate cement[J]. Construction and Building Materials, 2018, 169: 697-704.
DOI URL |
| [23] |
CHEN X Y, WANG S Y, ZHOU Y X, et al. Improved low-carbon magnesium oxysulfate cement pastes containing boric acid and citric acid[J]. Cement and Concrete Composites, 2022, 134: 104813.
DOI URL |
| [24] |
MIAO M, WU C Y, TAN Y S, et al. Mechanistic study of the effects of magnesia reactivity on setting and hardening of basic magnesium sulfate cement[J]. Journal of Advanced Concrete Technology, 2020, 18(11): 678-688.
DOI URL |
| [25] |
GUAN Y, CHANG J, HU Z Q, et al. Performance of magnesium hydroxide gel at different alkali concentrations and its effect on properties of magnesium oxysulfate cement[J]. Construction and Building Materials, 2022, 348: 128669.
DOI URL |
| [26] | 吴成友, 邢赛南, 张吾渝, 等. 碱式硫酸镁水泥水化规律研究[J]. 功能材料, 2016, 47(11): 11120-11124+11130. |
| WU C Y, XING S N, ZHANG W Y, et al. Study on hydration mechanism of basic magnesium sulfate cement[J]. Journal of Functional Materials, 2016, 47(11): 11120-11124+11130 (in Chinese). | |
| [27] | 马宏宇, 姬仁林, 马亚丽, 等. 有机酸调控硫氧镁水泥的水化进程[J]. 硅酸盐学报, 2025, 53(2): 396-405. |
| MA H Y, JI R L, MA Y L, et al. Organic acids modulate the hydration process of magnesium sulphide cements[J]. Journal of the Chinese Ceramic Society, 2025, 53(2): 396-405 (in Chinese). | |
| [28] | 烟 卫, 刘 昱, 李艳苹, 等. X射线衍射法钾混盐无标样定量相分析[J]. 理化检验-化学分册, 2014, 50(4): 413-416. |
| YAN W, LIU Y, LI Y P, et al. Quantitative phase analysis of potassium mixed salt by XRD without using reference standard[J]. Physical Testing and Chemical Analysis (Part B (Chemical Analysis)), 2014, 50(4): 413-416 (in Chinese). | |
| [29] |
WU C Y, CHEN W H, ZHANG H F, et al. The hydration mechanism and performance of Modified magnesium oxysulfate cement by tartaric acid[J]. Construction and Building Materials, 2017, 144: 516-524.
DOI URL |
| [30] | 文 静, 余红发, 吴成友, 等. 氯氧镁水泥水化历程的影响因素及水化动力学[J]. 硅酸盐学报, 2013, 41(5): 588-596. |
| WEN J, YU H F, WU C Y, et al. Hydration kinetic and influencing parameters in hydration process of magnesium oxychloride cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(5): 588-596 (in Chinese). |
| [1] | 李楠, 钟建军, 邓永杰, 梁云, 万德田, 李维红, 李栋伟. 偏高岭土改性轻烧氧化镁基磷酸镁水泥的3D打印性能[J]. 硅酸盐通报, 2024, 43(5): 1663-1672. |
| [2] | 杨树;刘百宽;田晓利;李志勋;冯润棠;郭杰. 川藏高纯电熔氧化镁制备及微观形貌[J]. 硅酸盐通报, 2019, 38(9): 2777-278. |
| [3] | 李广垠;李志坚;徐娜;栾旭;吴锋;郭玉香. 轻烧氧化镁活性对烧结镁砂性能的影响[J]. 硅酸盐通报, 2018, 37(5): 1699-1703. |
| [4] | 李晓辉;唐亚昆;高莎莎;王磊;刘浪. 新疆尖山菱镁矿制备轻烧氧化镁的煅烧工艺[J]. 硅酸盐通报, 2018, 37(1): 73-79. |
| [5] | 李振国;余四文;刘同海;刘博;王博;郑淇水. 活性MgO含量对碱式硫酸镁水泥强度及水化产物的影响[J]. 硅酸盐通报, 2017, 36(7): 2259-2262. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||