[1] 联合国经济和社会事务部. 2024年世界人口展望: 结果摘要[EB/OL]. (2024-07-11)[2025-01-12]. https://www.un.org/zh/node/219470. United Nations, Department of Economic and Social Affairs. World population prospects 2024: summary of results[EB/OL]. (2024-07-11) [2025-01-12]. https://www.un.org/zh/node/219470 (in Chinese). [2] RAVIKUMAR N, NALLASAMY K. Nasal end-tidal carbon dioxide monitoring during procedural sedation: is it time for wider adoption?[J]. Indian Journal of Critical Care Medicine, 2020, 24(8): 611-612. [3] 陈凯煜, 宣 晔, 沈梦婷, 等. 鼻咽式呼气末CO2监测连接鼻氧导管套装在手术室外非插管全麻术中应用的有效性及安全性观察[J]. 中国医疗器械信息, 2024, 30(6): 44-47. CHEN K Y, XUAN Y, SHEN M T, et al. Observation on the effectiveness and safety of nasopharyngeal end-tidal CO2 monitoringduring among nonoperating room anesthesia[J]. China Medical Device Information, 2024, 30(6): 44-47 (in Chinese). [4] DAI J Y, MENG J P, ZHAO X M, et al. A wearable self-powered multi-parameter respiration sensor[J]. Advanced Materials Technologies, 2023, 8(7): 2201535. [5] LI Y, ZHANG M J, HU X L, et al. Graphdiyne-based flexible respiration sensors for monitoring human health[J]. Nano Today, 2021, 39: 101214. [6] TAI H L, WANG S, DUAN Z H, et al. Evolution of breath analysis based on humidity and gas sensors: potential and challenges[J]. Sensors and Actuators B: Chemical, 2020, 318: 128104. [7] HU J Y, WU C T, LIU B H, et al. A dual-mode paper-based humidity sensor: optical and electrical dual-signal sensing platform for multifunctional applications[J]. Sensors and Actuators B: Chemical, 2025, 440: 137890. [8] DAS T K, JESIONEK M, MISTEWICZ K, et al. BiOI: self-powered humidity sensor and breath monitor[J]. Advanced Materials Technologies, 2025, 10(9): 2401988. [9] DENG C Z, ZHANG Y, YANG D, et al. Recent progress on barium titanate-based ferroelectrics for sensor applications[J]. Advanced Sensor Research, 2024, 3(6): 2300168. [10] HASAN S, AZHDAR B. Thermo-dielectric, humidito-dielectric, and humidity sensing properties of barium monoferrite and barium hexaferrite nanoparticles[J]. Results in Physics, 2022, 42: 105962. [11] CHANMAL C V, JOG J P. Dielectric relaxations in PVDF/BaTiO3 nanocomposites[J]. Express Polymer Letters, 2008, 2(4): 294-301. [12] HE Y, ZHANG T, ZHENG W, et al. Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning[J]. Sensors and Actuators B: Chemical, 2010, 146(1): 98-102. [13] 李婷玉, 魏 洁, 陈 楠, 等. 用于大气环境的电化学传感器的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371. LI T Y, WEI J, CHEN N, et al. Corrosion performance of electrochemical sensors for atmospheric environments[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(2): 365-371 (in Chinese). [14] LI G, HUANG K X, DENG J, et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics[J]. Advanced Materials, 2022, 34(15): 2200261. [15] LE T D, PHAN H P, KWON S, et al. Recent advances in laser-induced graphene: mechanism, fabrication, properties, and applications in flexible electronics[J]. Advanced Functional Materials, 2022, 32(48): 2270276. [16] YE R Q, JAMES D K, TOUR J M. Laser-induced graphene: from discovery to translation[J]. Advanced Materials, 2019, 31(1): 1803621. [17] SI H, LEE D, PARK D, et al. Size effects of polydopamine-coated BaTiO3 nanoparticles on the piezoelectric performance of P(VDF-TrFE)/BaTiO3 composite[J]. Journal of Materiomics, 2024, 10(4): 857-869. [18] LI N, CHEN X D, CHEN X P, et al. Ultrahigh humidity sensitivity of graphene oxide combined with Ag nanoparticles[J]. RSC Advances, 2017, 7(73): 45988-45996. |