[1] MORADIHAMEDANI P. Recent advances in dye removal from wastewater by membrane technology: a review[J]. Polymer Bulletin, 2022, 79(4): 2603-2631. [2] KUMARI H, RANGA R, CHAHAL S, et al. A review on photocatalysis used for wastewater treatment: dye degradation[J]. Water, Air, and Soil Pollution, 2023, 234(6): 349. [3] 谢高艺, 罗 恒, 马春平, 等. 基于醋酸纤维素的改性分离膜研究进展[J]. 水处理技术, 2020, 46(2): 19-24. XIE G Y, LUO H, MA C P, et al. Research progress of modified separation membrane based on cellulose acetate[J]. Technology of Water Treatment, 2020, 46(2): 19-24 (in Chinese) [4] PANDELE A M, COMANICI F E, CARP C A, et al. Synthesis and characterization of cellulose acetate-hydroxyapatite micro and nano composites membranes for water purification and biomedical applications[J]. Vacuum, 2017, 146: 599-605. [5] REN S J, GUO N, LI J H, et al. Integration of antibacterial and photocatalysis onto polyethersulfone membrane for fouling mitigation and contaminant degradation[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110401. [6] DAL ACQUA N, FARIA A C R, VEBBER M C, et al. Hydrogen photocatalytic production from the self-assembled films of PAH/PAA/TiO2 supported on bacterial cellulose membranes[J]. International Journal of Hydrogen Energy, 2018, 43(33): 15794-15806. [7] DAVARI S, OMIDKHAH M, SALARI S. Role of polydopamine in the enhancement of binding stability of TiO2 nanoparticles on polyethersulfone ultrafiltration membrane[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622: 126694. [8] YAO A R, YAN Y Q, TAN L, et al. Improvement of filtration and antifouling performance of cellulose acetate membrane reinforced by dopamine modified cellulose nanocrystals[J]. Journal of Membrane Science, 2021, 637: 119621. [9] ZHANG R X, BRAEKEN L, LUIS P, et al. Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine[J]. Journal of Membrane Science, 2013, 437: 179-188. [10] PAUL R, KAVINARMATHA K, PARTHIBAN S, et al. Tantalum doped titanium dioxide nanoparticles for efficient photocatalytic degradation of dyes[J]. Journal of Molecular Structure, 2023, 1277: 134869. [11] DING J, ZENG J X, ZENG Y J, et al. Engineering multistructure poly(vinylidene fluoride) membranes modified by polydopamine to achieve superhydrophilicity, excellent permeability, and antifouling properties[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(2): e2607. [12] AZARI S, ZOU L D. Using zwitterionic amino acid L-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance[J]. Journal of Membrane Science, 2012, 401: 68-75. [13] JAIN H, VERMA A K, DHUPPER R, et al. Development of CA-TiO2-incorporated thin-film nanocomposite forward osmosis membrane for enhanced water flux and salt rejection[J]. International Journal of Environmental Science and Technology, 2022, 19(6): 5387-5400. [14] SASIKALA V, SARALA S, KARTHIK P, et al. Cellulose acetate membranes loaded with WO3/g-C3N4: a synergistic approach for effective photocatalysis[J]. Nanotechnology, 2024, 35(47): 475401. [15] HOU J K, CHEN Y B, SHI W X, et al. Graphene oxide/methylene blue composite membrane for dyes separation: formation mechanism and separation performance[J]. Applied Surface Science, 2020, 505: 144145. [16] DIKICI T, DEMIRCI S, TÜNÇAY M M, et al. Effect of heating rate on structure, morphology and photocatalytic properties of TiO2 particles: thermal kinetic and thermodynamic studies[J]. Journal of Sol-Gel Science and Technology, 2021, 97(3): 622-637. |