[1] KUHLMAN K L, BARTOL J, CARTER A, et al. Scenario development for safety assessment in deep geologic disposal of high-level radioactive waste and spent nuclear fuel: a review[J]. Risk Analysis, 2024, 44(8): 1850-1864. [2] 刘立坡, 李筱珍, 靳立强, 等. 高水平放射性废物处理处置标准分析[J]. 辐射防护, 2021, 41(6): 496-502. LIU L P, LI X Z, JIN L Q, et al. Analysis on standards for high level radioactive waste treatment and disposal[J]. Radiation Protection, 2021, 41(6): 496-502 (in Chinese). [3] 徐 凯. 核废料玻璃固化国际研究进展[J]. 中国材料进展, 2016, 35(7): 481-488+517. XU K. Review of international research progress on nuclear waste vitrification[J]. Materials China, 2016, 35(7): 481-488+517 (in Chinese). [4] OJOVAN M I. Vitrification as a key solution for immobilisation within nuclear waste management[J]. Arabian Journal for Science and Engineering, 2025, 50(5): 3253-3261. [5] GUILLEN D P, FERKL P, POKORNY R, et al. Numerical modeling of Joule heated ceramic melter[J]. Materials Letters, 2024, 362: 136201. [6] YANG Y, WANG F W, KANG L J, et al. Research progress on high-level waste vitrification based on Joule heating ceramic melter[J]. Annals of Nuclear Energy, 2025, 216: 111273. [7] 徐冬青, 李路瑶, 贾子强, 等. 高放废液玻璃固化中配合料的玻璃化过程与建模[J]. 硅酸盐学报, 2023, 51(8): 2009-2016. XU D Q, LI L Y, JIA Z Q, et al. Feed-to-glass conversion and modeling during high-level liquid waste vitrification[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2009-2016 (in Chinese). [8] XU K, HRMA P, RICE J A, et al. Conversion of nuclear waste to molten glass: cold-cap reactions in crucible tests[J]. Journal of the American Ceramic Society, 2016, 99(9): 2964-2970. [9] FERKL P, HRMA P, KLOUŽEK J, et al. Cold-cap structure in a slurry-fed electric melter[J]. International Journal of Applied Glass Science, 2024, 15(1): 73-87. [10] XU K, HRMA P, RICE J, et al. Melter feed reactions at T≤700 ℃ for nuclear waste vitrification[J]. Journal of the American Ceramic Society, 2015, 98(10): 3105-3111. [11] GUILLEN D P, LEE S, HRMA P, et al. Evolution of chromium, manganese and iron oxidation state during conversion of nuclear waste melter feed to molten glass[J]. Journal of Non-Crystalline Solids, 2020, 531: 119860. [12] FERKL P, HRMA P, KLOUŽEK J, et al. Effect of material properties on batch-to-glass conversion kinetics[J]. International Journal of Applied Glass Science, 2023, 14(4): 491-501. [13] POKORNY R, HRMA P, LEE S, et al. Modeling batch melting: roles of heat transfer and reaction kinetics[J]. Journal of the American Ceramic Society, 2020, 103(2): 701-718. [14] SUNEEL G, KAUSHIK C P, SATYASAI P M, et al. Remote start-up of Joule heated ceramic melter-optimization of design parameters based on experimental and numerical investigations[J]. Journal of Nuclear Science and Technology, 2020, 57(3): 243-252. [15] HARIKRISHNAN V, MISHRA V K, RAO P M. Numerical modelling of joule melter for waste vitrification to analyze it’s electrical and thermal characteristics[C]//Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference, 2024: 265-270. [16] GUILLEN D P, ABBOUD A W. Sensitivity study of forced convection bubbling in a transparent viscous fluid as a proxy for molten borosilicate glass[J]. Annals of Nuclear Energy, 2019, 125: 38-49. [17] HRMA P, FERKL P, POKORNY R, et al. Glass production rate in an electric melter: melting rate correlation and primary foam stability[J]. Materials Letters, 2024, 369: 136689. [18] GUILLEN D P, ABBOUD A W. Heat transfer enhancement due to cold cap motion from bubbling in a waste glass melter[J]. Journal of Energy Resources Technology, 2024, 146(1): 011501. [19] FERKL P, HRMA P, ABBOUD A, et al. Conversion degree and heat transfer in the cold cap and their effect on glass production rate in an electric melter[J]. International Journal of Applied Glass Science, 2023, 14(2): 318-329. [20] GUILLEN D P. Bubbling behavior in a waste glass melter[C]//WIT Transactions on Engineering Sciences. Ancona: WIT Press, 2016: 75-85. [21] ABBOUD A W, GUILLEN D P, HRMA P, et al. Heat transfer from glass melt to cold cap: computational fluid dynamics study of cavities beneath cold cap[J]. International Journal of Applied Glass Science, 2021, 12(2): 233-244. [22] POKORNY R, KRUGER A A, HRMA P. Mathematical modeling of cold cap: effect of bubbling on melting rate[J]. Ceram Silik, 2014, 58(4): 296-302. [23] POKORNY R, HILLIARD Z J, DIXON D R, et al. One-dimensional cold cap model for melters with bubblers[J]. Journal of the American Ceramic Society, 2015, 98(10): 3112-3118. [24] LEE S, FERKL P, POKORNY R, et al. Simplified melting rate correlation for radioactive waste vitrification in electric furnaces[J]. Journal of the American Ceramic Society, 2020, 103(10): 5573-5578. [25] HWANG S, HWANG Y H, KIM C W. Study on bubbler position optimization of cold crucible induction melter[C]//Proceedings of the Korean Radioactive Waste Society Conference, 2017: 203-204. [26] ABASHAR M E E. Implementation of mathematical and computer modelling to investigate the characteristics of isothermal ammonia fluidized bed catalytic reactors[J]. Mathematical and Computer Modelling, 2003, 37(3/4): 439-456. [27] 徐冬青, 曲晓锐, 王 磊, 等. 玻璃固化熔炉不同电极连接方式熔化性能仿真研究[J]. 硅酸盐通报, 2024, 43(12): 4608-4619+4638. XU D Q, QU X R, WANG L, et al. Simulation study on melting performance of vitrification melter with different electrode connection modes[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(12): 4608-4619+4638 (in Chinese). [28] LEE S, CUTFORTH D A, MAR D, et al. Melting rate correlation with batch properties and melter operating conditions during conversion of nuclear waste melter feeds to glasses[J]. International Journal of Applied Glass Science, 2021, 12(3): 398-414. |