[1] 中国物资再生协会. 2024中国再生资源回收行业发展报告[J]. 资源再生, 2024(7): 27-38. China National Resources Recycling Association. 2024 China renewable resource recycling industry development report[J]. Resource Recycling, 2024(7): 27-38 (in Chinese). [2] SOLIMAN N A, TAGNIT-HAMOU A. Using glass sand as an alternative for quartz sand in UHPC[J]. Construction and Building Materials, 2017, 145: 243-252. [3] LIU T J, QIN S S, ZOU D J, et al. Experimental investigation on the durability performances of concrete using cathode ray tube glass as fine aggregate under chloride ion penetration or sulfate attack[J]. Construction and Building Materials, 2018, 163: 634-642. [4] JIAO Y B, ZHANG Y, GUO M, et al. Mechanical and fracture properties of ultra-high performance concrete (UHPC) containing waste glass sand as partial replacement material[J]. Journal of Cleaner Production, 2020, 277: 123501. [5] TAMANNA N, TULADHAR R, SIVAKUGAN N. Performance of recycled waste glass sand as partial replacement of sand in concrete[J]. Construction and Building Materials, 2020, 239: 117804. [6] JIAO Y B, WU Q F, LIU H P, et al. Flexural and fracture characterization of UHPGC notched beam with various glass sand replacement ratios and steel fiber contents[J]. Case Studies in Construction Materials, 2024, 21: e03612. [7] DADOUCH M, BELAL T, GHEMBAZA M S. Valorization of glass waste as partial substitution of sand in concrete-Investigation of the physical and mechanical properties for a sustainable construction[J]. Construction and Building Materials, 2024, 411: 134436. [8] YAN X Y, GAO Y X, LUO Y L, et al. Effect of different steel fiber types on mechanical properties of ultra-high performance concrete[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1167(1): 012001. [9] 杨医博, 夏英淦, 刘少坤, 等. 铣削型钢纤维与超高性能混凝土的界面黏结性能研究[J]. 材料导报, 2023, 37(4): 107-115. YANG Y B, XIA Y G, LIU S K, et al. Interfacial bond performance between milling steel fiber and ultra-high performance concrete[J]. Materials Reports, 2023, 37(4): 107-115 (in Chinese). [10] 姚智高, 林 常, 蔡 舒, 等. 粉煤灰对PVA纤维/水泥基体界面作用及复合材料拉伸性能的影响[J]. 硅酸盐通报, 2022, 41(7): 2327-2336. YAO Z G, LIN C, CAI S, et al. Effect of fly ash on PVA fiber/cementitious matrix interfacial interactions and tensile properties of composites[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2327-2336 (in Chinese). [11] 张秀芝, 孙 伟, 张倩倩, 等. 混杂钢纤维增强超高性能水泥基材料力学性能分析[J]. 东南大学学报(自然科学版), 2008, 38(1): 156-161. ZHANG X Z, SUN W, ZHANG Q Q, et al. Mechanical behaviors of hybrid steel fiber reinforced ultra-high performance cementitious composites[J]. Journal of Southeast University (Natural Science Edition), 2008, 38(1): 156-161 (in Chinese). [12] 袁 明, 朱海乐, 颜东煌, 等. 钢纤维埋深与类型影响钢纤维-UHPC基体界面黏结性能的试验研究[J]. 材料导报, 2023, 37(16): 135-143. YUAN M, ZHU H L, YAN D H, et al. Experimental study on the effect of steel fiber embedment depth and type on the interfacial bonding properties of steel fiber-UHPC matrix[J]. Materials Reports, 2023, 37(16): 135-143 (in Chinese). [13] WEI W, LIU F, XIONG Z, et al. Effect of loading rates on bond behaviour between basalt fibre-reinforced polymer bars and concrete[J]. Construction and Building Materials, 2020, 231: 117138. [14] 张亚芳, 曾 科, 包嗣海, 等. 玻璃砂超高性能水泥基复合材料的制备及性能[J]. 深圳大学学报(理工版), 2024, 41(1): 66-73. ZHANG Y F, ZENG K, BAO S H, et al. Preparation and properties of glass sand ultra-high performance cementitious composites[J]. Journal of Shenzhen University (Science and Engineering), 2024, 41(1): 66-73 (in Chinese). [15] 霍永杰. 埋深、间距及加载速率对钢纤维混凝土双丝拉拔三维动态性能的影响[D]. 广州: 广州大学, 2022. HUO Y J. Effects of embedment length, spacing and loading rate on 3D dynamic performance of steel fiber concrete with twin fibers pullout[D]. Guangzhou: Guangzhou University, 2022 (in Chinese). [16] 中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13—2009[S]. 北京: 中国计划出版社, 2009. China Association for Engineering Construction Standardization. Standard test methods for fiber reinforced concrete: CECS 13—2009[S]. Beijing: China Planning Press, 2009 (in Chinese). [17] French Standard Institute. Specific rules for ultra-high performance fiber reinforced concrete (UHPFRC): NF P 18-710[S]. Paris: AFNOR, 2020. [18] 袁 明, 吴晓娟, 颜东煌, 等. 加载速率对钢纤维与超高性能混凝土黏结性能的影响[J]. 长安大学学报(自然科学版), 2022, 42(5): 62-72. YUAN M, WU X J, YAN D H, et al. Effect of loading rate on bond properties of steel fiber and ultra-high performance concrete[J]. Journal of Chang’an University (Natural Science Edition), 2022, 42(5): 62-72 (in Chinese). [19] BAO S H, ZHANG Y F, LI C B, et al. Interfacial bonding behavior of steel fibers when using fine glass powder as partial substitution of silica fume/cement[J]. Construction and Building Materials, 2024, 411: 134516. [20] 戚家南. 基于界面黏结性能多尺度分析的UHPC梁计算方法与试验研究[D]. 南京: 东南大学, 2018. QI J N. Experimental and theoretical study on design method of UHPC beams based on multiscale analysis of interfacial bond behavior[D]. Nanjing: Southeast University, 2018 (in Chinese). [21] DENG Y L, ZHANG Z H, SHI C J, et al. Steel fiber-matrix interfacial bond in ultra-high performance concrete: a review[J]. Engineering, 2023, 22: 215-232. [22] NIU Y F, WEI J X, JIAO C J. Multi-scale fiber bridging constitutive law based on meso-mechanics of ultra high-performance concrete under cyclic loading[J]. Construction and Building Materials, 2022, 354: 129065. |