[1] 邹 敏, 沈 玉, 刘娟红. 钢渣粉在水泥基材料中应用研究综述[J].硅酸盐通报, 2021, 40(9): 2964-2977. ZOU M, SHEN Y, LIU J H. A review of research on the application of steel slag powder in cement-based materials[J]. Bulletin of the Chinese Silicate Society, 2021, 40(9): 2964-2977 (in Chinese). [2] 何智海, 张晓翔, 詹培敏, 等. 钢渣粉及其对水泥基材料性能的影响研究进展[J].混凝土, 2020(2): 83-89+93. HE Z H, ZHANG X X, ZHAN P M, et al. Research progress on steel slag powder and its influence on the properties of cement-based materials[J]. Concrete, 2020(2): 83-89+93 (in Chinese). [3] 叶雁飞, 马伟克, 申振伟, 等. 钢渣对混凝土安定性的影响及评价[J].化工矿物与加工, 2024, 53(2): 40-46. YE Y F, MA W K, SHEN Z W, et al. The influence and evaluation of steel slag on the stability of concrete[J]. Chemical Minerals and Processing, 2024, 53(2): 40-46 (in Chinese). [4] UYSAL M, YILMAZ K, IPEK M. The effect of mineral admixtures on mechanical properties, chloride ion permeability and impermeability of self-compacting concrete[J]. Construction and Building Materials, 2012, 27(1): 263-270. [5] ANASTASIOU E K, PAPAYIANNI I, PAPACHRISTOFOROU M. Behavior of self compacting concrete containing ladle furnace slag and steel fiber reinforcement[J]. Materials & Design, 2014, 59: 454-460. [6] QASRAWI H. The use of steel slag aggregate to enhance the mechanical properties of recycled aggregate concrete and retain the environment[J]. Construction and Building Materials, 2014, 54: 298-304. [7] 韦选纯, 汤盛文, 何 真, 等. 聚乙烯醇纤维增强钢渣粉-水泥复合材料基本力学性能及微观结构[J].复合材料学报, 2019, 36(8): 1918-1925. WEI X C, TANG S W, HE Z, et al. Basic mechanical properties and microstructure of polyvinyl alcohol fiber-reinforced steel slag powder cement composite material[J]. Journal of Composite Materials, 2019, 36(8): 1918-1925 (in Chinese). [8] 孙家瑛. 钢渣微粉对混凝土抗压强度和耐久性的影响[J]. 建筑材料学报, 2005, 8(1): 63-66. SUN J Y. Influence of steel slag powder on compressive strength and durability of concrete[J]. Journal of Building Materials, 2005, 8(1): 63-66 (in Chinese). [9] LIU J, WANG D M. Influence of steel slag-silica fume composite mineral admixture on the properties of concrete[J]. Powder Technology, 2017, 320: 230-238. [10] LI V C. Engineered cementitious composites-tailored composites through micromechanical modeling[J]. Journal of Advanced Concrete Technology, 1998, 1(3): 1-38. [11] LIN Z, KANDA T, LI V C. On interface property characterization and performance of fiber-reinforced cementitious composites[J]. Materials and Structures, 1999, 1: 173-184. [12] 李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J].工程力学, 2009, 26(增刊2): 23-67. LI Q H, XU S L. Research progress on basic properties and structural applications of ultra-high toughness cement-based composite materials[J]. Engineering Mechanics, 2009, 26(supplement 2): 23-67 (in Chinese). [13] 王义超, 侯梦君, 余江滔, 等. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540. WANG Y C, HOU M J, YU J T, et al. Experimental study on mechanical properties of ultra-high ductile cementitious composites[J]. Materials Reports, 2018, 32(20): 3535-3540 (in Chinese). [14] 杨英姿, 祝 瑜, 高小建, 等. 掺粉煤灰PVA纤维增强水泥基复合材料的试验研究[J]. 青岛理工大学学报, 2009, 30(4): 51-54+59. YANG Y Z, ZHU Y, GAO X J, et al. Experimental study on high-ductile PVA fiber-reinforced cement-based composite materials with fly ash[J]. Journal of Qingdao University of Technology, 2009, 30(4): 51-54+59 (in Chinese). [15] ŞAHMARAN M, LI V C. Durability properties of micro-cracked ECC containing high volumes fly ash[J]. Cement and Concrete Research, 2009, 39(11): 1033-1043. [16] HISSEINE O A, TAGNIT-HAMOU A. Nanocellulose for ecological nanoengineered strain-hardening cementitious composites incorporating high-volume ground-glass pozzolans[J]. Cement and Concrete Composites, 2020, 112: 103662. [17] WANG M J, LI H D, ZENG Q, et al. Effects of nanoclay addition on the permeability and mechanical properties of ultra high toughness cementitious composites[J]. Journal of Zhejiang University: Science A, 2020, 21(12): 992-1007. [18] LI F P, LIU L S, YANG Z M, et al. Physical and mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste granulated blast furnace slag (GBFS) and functionalized multi-walled carbon nanotubes (MWCNTs)[J]. Journal of Hazardous Materials, 2021, 401: 123339. [19] 中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13—2009[S]. 北京: 中国计划出版社, 2010. China Engineering Construction Standardization Association. Fiber reinforced concrete test method standard: CECS 13—2009[S]. Beijing: China Plan Press, 2010 (in Chinese). [20] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Supervision and Administration. Standards for test methods of physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Construction Industry Publishing House, 2019 (in Chinese). [21] KOUROUNIS S, TSIVILIS S, TSAKIRIDIS P E, et al. Properties and hydration of blended cements with steelmaking slag[J]. Cement and Concrete Research, 2007, 37(6): 815-822. [22] LU C, LI V C, LEUNG C K Y. Flaw characterization and correlation with cracking strength in engineered cementitious composites (ECC)[J]. Cement and Concrete Research, 2018, 107: 64-74. [23] XIONG X L, YANG Z X, YAN X Y, et al. Mechanical properties and microstructure of engineered cementitious composites with high volume steel slag and GGBFS[J]. Construction and Building Materials, 2023, 398: 132512. [24] LI V C. 超高延性水泥基复合材料(ECC): 面向可持续和韧性基础设施的可弯曲混凝土[M]. 张亚梅,译. 北京: 科学出版社, 2022. LI V C. Ultra-high ductility cementitious composites (ECC): flexural concrete for sustainable and resilient infrastructure[M]. ZHANG Y M, tran. Beijing: Science Press, 2022 (in Chinese). [25] 傅柏权, 蔡向荣. 大掺量粉煤灰对高韧性纤维增强水泥基复合材料性能的影响[J]. 混凝土, 2019(8): 88-91. FU B Q, CAI X R. Effect of large amount fly ash on properties of high toughness fiber reinforced cementitious composites[J]. Concrete, 2019(8): 88-91 (in Chinese). [26] 江世永, 龚宏伟, 姚未来, 等. ECC材料力学性能与本构关系研究进展[J]. 材料导报, 2018, 32(23): 4192-4204. JIANG S Y, GONG H W, YAO W L, et al. A survey on mechanical behavior and constitutive model of engineered cementitious composite[J]. Materials Reports, 2018, 32(23): 4192-4204 (in Chinese). [27] 钱维民, 苏 骏, 史庆轩, 等. 中高温及低温作用后超高韧性水泥基复合材料的力学性能[J]. 复合材料学报, 2024, 41(4): 2014-2030. QIAN W M, SU J, SHI Q X, et al. Mechanical properties of ultra-high toughness cement-based composites under medium high and low temperature conditions[J]. Journal of Composite Materials, 2024, 41(4): 2014-2030 (in Chinese). [28] 姚淇耀, 陆宸宇, 罗月静, 等. PE/PVA纤维海砂ECC的拉伸性能与本构模型[J].建筑材料学报, 2022, 25(9): 976-983. YAO Q Y, LU C Y, LUO Y J, et al. Tensile properties and constitutive model of PE/PVA fiber sea sand ECC[J]. Journal of Building Materials, 2022, 25(9): 976-983 (in Chinese). [29] 朱俊涛, 李志强, 王新玲, 等. 工程用水泥基复合材料单轴受拉本构关系模型[J]. 应用基础与工程科学学报, 2021, 29(2): 471-482. ZHU J T, LI Z Q, WANG X L, et al. Constitutive relationship model of engineered cementitious composites under uniaxial tension[J]. Journal of Basic Science and Engineering, 2021, 29(2): 471-482 (in Chinese). [30] KANDA T, LIN Z, LI V C. Tensile stress-strain modeling of pseudostrain hardening cementitious composites[J]. Journal of Materials in Civil Engineering, 2000, 12(2): 147-156. |