[1] MOORE G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 1998, 86(1): 82-85. [2] 佚名. 玻璃通孔(TGV)技术的前景及机遇[J]. 股市动态分析, 2024(10): 6-9. Anon. Prospect and opportunity of glass through hole (TGV) technology[J]. Stock Market Trend Analysis Weekly, 2024(10): 6-9 (in Chinese). [3] MOORE. Progress in digital integrated electronics[J]. International Electron Devices Meeting, 1975: 11-13. [4] 陈俊伟, 王超凡, 张章龙, 等. 玻璃在5G通讯中的应用[J]. 电子元件与材料, 2023, 42(8): 899-906. CHEN J W, WANG C F, ZHANG Z L, et al. Glass for 5G applications[J]. Electronic Components and Materials, 2023, 42(8): 899-906 (in Chinese). [5] 李 萌, 李 础, 李 焱. 玻璃基集成光量子芯片: 从二维到三维[J]. 物理, 2023, 52(8): 542-551. LI M, LI C, LI Y. Glass-based integrated quantum photonic chips: from 2D to 3D[J]. Physics, 2023, 52(8): 542-551 (in Chinese). [6] 程 鑫. 基于TSV的解析三维集成电路布局算法研究[D]. 绵阳: 西南科技大学, 2021: 8-19. CHENG X. Research on analytic 3D integrated circuit layout algorithm based on TSV[D]. Mianyang: Southwest University of Science and Technology, 2021: 8-19 (in Chinese). [7] 朱樟明, 尹湘坤, 刘晓贤, 等. 硅基三维集成射频无源器件及电路研究进展[J]. 微电子学与计算机, 2023, 40(1): 11-17. ZHU Z M, YIN X K, LIU X X, et al. Research progress of silicon-based 3D integrated RF passive devices and circuits[J]. Microelectronics & Computer, 2023, 40(1): 11-17 (in Chinese). [8] 徐 成, 樊嘉祺, 张宏伟, 等. 硅转接板制造与集成技术综述[J]. 电子与封装, 2024, 24(6): 54-64+6. XU C, FAN J Q, ZHANG H W, et al. Review of silicon interposer fabrication and integration technology[J]. Electronics & Packaging, 2024, 24(6): 54-64+6 (in Chinese). [9] 林金堵. 玻璃基板和封装玻璃载板[J]. 印制电路信息, 2017, 25(6): 38-41+55. LIN J D. Glass substrate and glass IC substrate[J]. Printed Circuit Information, 2017, 25(6): 38-41+55 (in Chinese). [10] 杨 昆, 朱家昌, 吉 勇, 等. 有机封装基板的芯片埋置技术研究进展[J]. 电子与封装, 2024, 24(2): 15-25. YANG K, ZHU J C, JI Y, et al. Progress on chip embedded technology for organic package substrates[J]. Electronics & Packaging, 2024, 24(2): 15-25 (in Chinese). [11] 李志光, 胡曾铭, 张江陵, 等. 大尺寸有机基板的材料设计与封装翘曲控制[J]. 电子与封装, 2024, 24(2): 47-54. LI Z G, HU Z M, ZHANG J L, et al. Material design and package warpage control for large-size organic substrates[J]. Electronics & Packaging, 2024, 24(2): 47-54 (in Chinese). [12] 雷 张, 李洪滔, 张春艳, 等. 高热导氮化硅陶瓷基板材料研究进展[J]. 中国陶瓷, 2023, 59(7): 1-9+20. LEI Z, LI H T, ZHANG C Y, et al. Research progress of silicon nitride ceramic substrate materials with high thermal conductivity[J]. China Ceramics, 2023, 59(7): 1-9+20 (in Chinese). [13] 朱允瑞, 贺云鹏, 杨 鑑, 等. 高导热氮化硅陶瓷基板影响因素研究现状[J]. 硅酸盐通报, 2024, 43(7): 2649-2660. ZHU Y R, HE Y P, YANG J, et al. Research status on influencing factors of high thermal conductivity Si3N4 ceramic substrate[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(7): 2649-2660 (in Chinese). [14] BRUSBERG L, SCHRÖDER H, TÖPPER M, et al. Photonic system-in-package technologies using thin glass substrates[C]//2009 11th Electronics Packaging Technology Conference. December 9-11, 2009, Singapore. IEEE, 2009: 930-935. [15] SCHRÖDER H, BRUSBERG L, ARNDT-STAUFENBIEL N, et al. Glass panel processing for electrical and optical packaging[C]//2011 IEEE 61st Electronic Components and Technology Conference (ECTC). May 31-June 3, 2011, Lake Buena Vista, FL, USA. IEEE, 2011: 625-633. [16] CHIEN C H, YU H, LEE C K, et al. Performance and process characteristic of glass interposer with through-glass-via(TGV)[C]//2013 IEEE International 3D Systems Integration Conference (3DIC). October 2-4, 2013, San Francisco, CA, USA. IEEE, 2013: 1-7. [17] SUKUMARAN V, BANDYOPADHYAY T, SUNDARAM V, et al. Low-cost thin glass interposers as a superior alternative to silicon and organic interposers for packaging of 3-D ICs[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(9): 1426-1433. [18] SUKUMARAN V, KUMAR G, RAMACHANDRAN K, et al. Design, fabrication, and characterization of ultrathin 3-D glass interposers with through-package-vias at same pitch as TSVs in silicon[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(5): 786-795. [19] LAAKSO M J, BLEIKER S J, LILJEHOLM J, et al. Through-glass vias for glass interposers and MEMS packaging applications fabricated using magnetic assembly of microscale metal wires[J]. IEEE Access, 1886, 6: 44306-44317. [20] QIAN L B, XIA Y S, SHI G, et al. Electrical-thermal characterization of through packaging vias in glass interposer[J]. IEEE Transactions on Nanotechnology, 2017, 16(6): 901-908. [21] ZHONG Y, BAO S C, HE Y M, et al. Heterogeneous integration of diamond-on-chip-on-glass interposer for efficient thermal management[J]. IEEE Electron Device Letters, 2024, 45(3): 448-451. [22] CHENG L, CHEN Z H, YU D Q, et al. A high-efficiency transformer-in-package isolated DC-DC converter using glass-based fan-out wafer-level packaging[J]. Fundamental Research, 2023: 1407-141. [23] 杨冠南, 刘 宇, 黄钰森, 等. 一种使用玻璃基板的系统级扇出型封装结构及其加工方法: CN113314475B[P]. 2022-05-17. YANG G N, LIU Y, HUANG J S, et al. A system-in-package fan-out structure using glass substrates and its processing method: CN113314475B[P]. 2022-05-17 (in Chinese). [24] LIU C H, LU R K, CHUNG H, et al. Glass-embedded fan-out antenna-in-packaging for 5G millimeter wave applications[J]. International Journal of Integrated Engineering, 2022, 14(6): 019. [25] LI G J, FU R L, AGATHOPOULOS S, et al. Ultra-low thermal expansion coefficient of PZB/β-eucryptite composite glass for MEMS packaging[J]. Ceramics International, 2020, 46(6): 8385-8390. [26] WU J, ZHANG H, IKEHASHI T. Fabrication of low-resonant-frequency inertial MEMS using through-silicon DRIE applied to silicon-on-glass[J]. Japanese Journal of Applied Physics, 2024, 63(5): 056501. [27] SZYSZKA P, JENDRYKA J, SOBKÓW J, et al. MEMS quadrupole mass spectrometer[J]. Sensors and Actuators B: Chemical, 2024, 411: 135712. [28] ROOIJEN N V, ALONSO-DELPINO M, BUENOO J, et al. A core-shell lens for antenna on-package integration at D-band[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(8): 6195-6208. [29] LIU Y, LUK K M. An optically transparent magneto-electric dipole antenna design by integrating flexible transparent metal mesh film on glass[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(7): 5569-5577. [30] BARTLETT C, MALAVE A, LETZ M, et al. D-band corrugated horn antenna using multi-layer structured-glass technology[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(9): 2792-2796. [31] 李 青, 李赫然, 李志勇, 等. 一种硼硅玻璃组合物、硼硅玻璃及其制备方法和应用: CN112811813A[P]. 2021-05-18. LI Q, LI H R, LI Z Y, et al. A borosilicate glass composition, borosilicate glass, and its preparation method and application: CN112811813A[P]. 2023-05-18 (in Chinese). [32] 周胜权, 刘 攀, 赵广凯, 等. 硼硅玻璃及其制备方法: CN117303733A[P]. 2023-12-29. ZHOU S Q, LIU P, ZHAO G K, et al. Borosilicate glass and its preparation method: CN117303733A[P]. 2023-12-29 (in Chinese). [33] 舒众众, 刘群娟, 刘伟超, 等. 一种铝硅酸盐玻璃: CN116282910A[P]. 2023-06-23. SHU Z Z, LIU Q J, LIU W C, et al. An aluminosilicate glass: CN116282910A[P]. 2023-06-23 (in Chinese). [34] 彭 寿, 张 冲, 沈玉国, 等. 一种铝硅酸盐玻璃: CN111747645A[P]. 2020-10-09. PENG S, ZHANG C, SHEN Y G, et al. An aluminosilicate glass: CN111747645A[P]. 2020-10-09 (in Chinese). [35] 郑志勇, 何 梅, 黄秀辉, 等. 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法、及显示设备: CN116395955A[P]. 2023-07-07. ZHENG Z Y, HE M, HUANG X H, et al. Aluminosilicate glass composition, aluminosilicate glass, its preparation method, and display device: CN116395955A[P]. 2023-07-07 (in Chinese). [36] 柳濑智基, 三和晋吉. 无碱玻璃及无碱玻璃基板: CN101568495A[P]. 2009-10-28. TOMOKI Y, SHINKI S. Alkali-free glass and alkali-free glass substrate: CN101568495A[P]. 2009-10-28 (in Chinese). [37] 西沢学, 加濑準一郎, 铃木一弘, 等. 无碱玻璃、其制造方法及液晶显示板: CN1898168B[P]. 2012-08-01. MANABU N, JUNICHIRO K, KAZUHIRO S. Alkali free glass and its production method and liquid crystal display panel: CN1898168B[P]. 2012-08-01 (in Chinese). [38] RAMKUMAR J, SUDARSAN V, CHANDRAMOULEESWARAN S, et al. Structural studies on boroaluminosilicate glasses[J]. Journal of Non-Crystalline Solids, 2008, 354(15/16): 1591-1597. [39] ZHANG X H, YUE Y L, WU H T. Effects of cation field strength on structure and properties of boroaluminosilicate glasses[J]. Materials Research Innovations, 2013, 17(3): 212-217. [40] CHEN Z Y, GUO M F, ZHANG R, et al. Measurement and isolation of thermal stress in silicon-on-glass MEMS structures[J]. Sensors, 2018, 18(8): 2603. [41] JOO J W, CHOA S H. Deformation behavior of MEMS gyroscope sensor package subjected to temperature change[J]. IEEE Transactions on Components and Packaging Technologies, 2007, 30(2): 346-354. [42] CUI M, HUANG Y, WANG W, et al. MEMS gyroscope temperature compensation based on drive mode vibration characteristic control[J]. Micromachines, 2019, 10(4): 248. [43] 陈 力, 杨晓锋, 于大全. 玻璃通孔技术研究进展[J]. 电子与封装, 2021, 21(4): 5-17. CHEN L, YANG X F, YU D Q. Development of through glass via technology[J]. Electronics & Packaging, 2021, 21(4): 5-17 (in Chinese). [44] 赵 瑾, 李 威, 钟 毅, 等. 玻璃通孔三维互连技术中的应力问题[J]. 机械工程学报, 2022, 58(2): 246-258. ZHAO J, LI W, ZHONG Y, et al. Stress issues in 3D interconnect technology using through glass vias[J]. Journal of Mechanical Engineering, 2022, 58(2): 246-258 (in Chinese). [45] 张名川, 靖向萌, 王 京, 等. 应用于TGV的ICP玻璃刻蚀工艺研究[J]. 真空科学与技术学报, 2014, 34(11): 1222-1227. ZHANG M C, JING X M, WANG J, et al. Formation of through-glass via by inductively coupled plasma etching[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(11): 1222-1227 (in Chinese). [46] 樊江涛. 高介电常数陶瓷的介电行为及储能性能研究[D]. 天津: 天津理工大学, 2023: 3-7. FAN J T. Study on dielectric behavior and energy storage performance of high dielectric constant ceramics[D]. Tianjin: Tianjin University of Technology, 2023: 3-7 (in Chinese). [47] 王义才, 薛 超. 印制电路基材介电常数测试方法标准现状分析[J]. 标准科学, 2023(增刊1): 169-173. WANG Y C, XUE C. Analysis of the standards for dielectric constant test methods of printed circuit substrate[J]. Standard Science, 2023(supplement 1): 169-173 (in Chinese). [48] 邱国荣. 低介电常数聚酰亚胺薄膜的制备与性能研究[D]. 广州: 华南理工大学, 2023: 2-3. QIU G R. Preparation and properties of polyimide films with low dielectric constant[D]. Guangzhou: South China University of Technology, 2023: 2-3 (in Chinese). [49] NIMBALKAR P, BHASKAR P, KATHAPERUMAL M, et al. A review of polymer dielectrics for redistribution layers in interposers and package substrates[J]. Polymers, 2023, 15(19): 3895. [50] BAKER-JARVIS J, JANEZIC M, RIDDLE B, et al. Dielectric and conductor-loss characterization and measurements on electronic packaging materials: NIST Technical Note 1520[R]. USA: National Institute of standards and Technology, 2001. [51] 吉力小兵, 张继华. 玻璃基三维集成技术领域系列研究新进展[J]. 电子与封装, 2024, 24(3): 101-102. JI L, ZHANG J H. A series of research progress in through glass vias 3D integration technology[J]. Electronics & Packaging, 2024, 24(3): 101-102 (in Chinese). [52] 梁天鹏. 低损耗可光刻玻璃及通孔技术研究[D]. 成都: 电子科技大学, 2021. LIANG T P. Study on low loss lithographic glass and through-hole technology[D]. Chengdu: University of Electronic Science and Technology of China, 2021 (in Chinese). [53] CHOI K, KIM S W, LEE J H, et al. Eco-friendly glass wet etching for MEMS application: a review[J]. Journal of the American Ceramic Society, 2024, 107(10): 6497-6515. |