欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (11): 4274-4282.DOI: 10.16552/j.cnki.issn1001-1625.2025.0770

• 重大工程材料设计与服役评价 • 上一篇    

高阶统计生成式模型:各向异性多孔材料重构

许诺1, 王凤娟2, 吴浩天1, 陈捷3, 蒋金洋2, 许文祥1   

  1. 1.河海大学力学与工程科学学院,南京 211100;
    2.东南大学材料科学与工程学院,南京 211189;
    3.保利长大工程有限公司,广州 511431
  • 收稿日期:2025-07-31 修订日期:2025-09-08 出版日期:2025-11-15 发布日期:2025-12-04
  • 通信作者: 许文祥,博士,教授。E-mail:xuwenxiang@hhu.edu.cn
  • 作者简介:许 诺(1994—),女,博士,讲师。主要从事复合材料力学的研究。E-mail:xunuo1994@hhu.edu.cn
  • 基金资助:
    国家自然科学基金原创探索项目(52350004);国家自然科学基金联合基金项目(U24A20168);国家自然科学基金青年科学基金项目(C类)(12402162)

High-Order Statistical Generative Model: Reconstruction of Anisotropic Porous Materials

XU Nuo1, WANG Fengjuan2, WU Haotian1, CHEN Jie3, JIANG Jinyang2, XU Wenxiang1   

  1. 1. College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, China;
    2. College of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
    3. Poly Changda Engineering Co., Ltd., Guangzhou 511431, China
  • Received:2025-07-31 Revised:2025-09-08 Published:2025-11-15 Online:2025-12-04

摘要: 多孔材料具有典型的非均质特征,宏观性能本质上受微观结构特征调控,因此,建立精确的微观结构表征体系并实现高保真数值建模是揭示材料构效关系的核心科学问题。本文提出了一种基于深度学习的多相各向异性多孔材料微观结构重构方法。该方法将深度卷积生成式对抗网络模型与切片采样策略相结合,并基于One-hot编码准则将复杂的多相重构问题分解为一系列两相重构任务,成功构建了多相各向异性多孔材料高效重构模型。同时,提出了将三点统计相关函数算法作为重构模型的高阶统计控制器,突破了传统二阶统计量的表征局限,实现了微观结构高阶特征的精准量化。本研究为材料性能预测与微观结构优化设计提供了重要的理论依据与工程应用指导。

关键词: 多孔材料, 多相, 微观结构, 重构, 高阶统计, 深度卷积生成式对抗网络模型

Abstract: Porous materials exhibit typical heterogeneous characteristics, with their macroscopic properties fundamentally governed by microstructural features. Therefore, establishing an accurate microstructure characterization system and realizing high-fidelity numerical modeling were the core scientific issues to reveal the structure-activity relationship of materials. This study proposes a deep learning-based reconstruction method for multiphase anisotropic porous microstructure. By integrating a deep convolutional generative adversarial network model with a slice sampling strategy, and decomposing the complex multiphase reconstruction task into a series of two-phase reconstruction tasks based on the One-hot encoding principle, the proposed method efficiently reconstruct multiphase anisotropic porous materials. In addition, a three-point statistical correlation function algorithm is introduced as a high-order statistical controller for the reconstruction model, addressing the limitations of traditional second-order statistical descriptors and enabling precise quantification of high-order microstructural features. This work provides valuable theoretical insights and practical guidance for performance prediction and microstructure optimization of porous materials.

Key words: porous material, multiphase, microstructure, reconstruction, high-order statistic, deep convolutional generative adversarial network model

中图分类号: