[1] 赵万帮. 中国日用玻璃产业现状与发展前景[J]. 硅酸盐通报, 2015, 34: 21-29. ZHAO W B. Current status and development prospect of China's daily glass industry[J]. Bulletin of the Chinese Ceramic Society, 2015, 34: 21-29(in Chinese). [2] 曾红杰, 周文彩, 官 敏, 等. 全氧燃烧玻璃窑炉热化学再生技术实验研究[J]. 硅酸盐通报, 2023, 42(12): 4509-4517+4541. ZENG H J, ZHOU W C, GUAN M, et al. Experimental investigation of thermochemical regeneration technology for oxy-fuel combustion glass furnace[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4509-4517+4541 (in Chinese). [3] VAN-VALBURG M, SCHUURMANS F, SPERRY E, et al. Operating experience with the OPTIMELTTM heat recovery technology on a tableware glass furnace[M]//79th Conference on Glass Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019: 201-211. [4] VALBURG M V, SPERRY E, LAUX S, et al. Design and implementation of OPTIMELTTM heat recovery for an oxy-fuel furnace at libbey leerdam[J]. Ceramic Engineering and Science Proceedings, 2018, 39(1): 87-97. [5] POPOV S K, SVISTUNOV I N, GARYAEV A B, et al. The use of thermochemical recuperation in an industrial plant[J]. Energy, 2017, 127: 44-51. [6] VAN-VALBURG M, SCHUURMANS F, DE-DIEGO J, et al. OPTIMELT operating data from an OPTIMELTTM thermo-chemical regenerator system on a tableware glass furnace at Libbey Leerdam[J]. Glass Machine Plants and Accessories, 2021(1): 28-32. [7] 李晓曦. 玻璃窑炉中石油焦粉富氧燃烧特性研究[D]. 北京: 北京交通大学, 2012. LI X X. Oxygen-enriched combustion characteristics of petroleum coke in glass furnace[D].Beijing: Beijing Jiaotong University, 2012 (in Chinese). [8] 崔兴光, 王均光, 沈建兴, 等. 玻璃窑炉节能减排技术改造及应用[J]. 玻璃搪瓷与眼镜, 2022, 50(4): 24-29+10. CUI X G, WANG J G, SHEN J X, et al. Technical improvement and application of energy conservation and pollution reduction for glass furnace[J]. Glass Enamel & Ophthalmic Optics, 2022, 50(4): 24-29+10 (in Chinese). [9] 彭 寿, 马立云, 曾红杰, 等. 玻璃工业窑炉二氧化碳烟气捕集、提纯与应用[J]. 建筑玻璃与工业玻璃, 2022, 322(1): 3-7. PENG S, MA L Y, ZENG H J, et al. Carbon dioxide capture, purification, and application of glass furnace[J]. Architectural & Functional Glass, 2022, 322(1): 3-7 (in Chinese). [10] 张 端. 玻璃生产中优化问题的研究: 窑炉保温优化设计和玻璃配合料优化计算[D]. 杭州: 浙江大学, 2002: 1-5. ZHANG D. Two optimization techniques about glass industry: optimum design of heat insulation of glass furnaces and optimization of batch calculation of glass[D]. Hangzhou: Zhejiang University, 2002: 1-5 (in Chinese). [11] 谭 汀. 玻璃熔窑烟气余热利用项目综合效益评价[D]. 北京: 清华大学, 2017: 2-10. TAN T. Comprehensive benefit evaluation of waste heat utilization project in glass furnace[D]. Beijing: Tsinghua University, 2017: 2-10 (in Chinese). [12] 曾雄伟, 程红莉, 张文玲, 等. 玻璃原料及配合料的控制[J]. 玻璃, 2009, 36(1): 27-33. ZENG X W, CHENG H L, ZHANG W L, et al. Control of raw materials and batch of glass[J]. Glass, 2009, 36(1): 27-33 (in Chinese). [13] 沈 洋. 《硅酸盐学报》“能源材料” 专题前言[J]. 硅酸盐学报, 2021, 49(7): 1245-1246. SHEN Y. Preface of “energy materials” in Journal of the Chinese Ceramic Silicate[J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1245-1246 (in Chinese). [14] 何 威. 中国 “洛阳浮法玻璃工艺” 技术发展与创新: 超大吨位浮法玻璃熔窑技术的研发过程和发展回顾[J]. 玻璃, 2021, 48(10): 22-30. HE W. Technological development and innovation of Luoyang floating glass technology in China: a review of the research and development process of super tonnage float glass melting furnace technology[J]. Glass, 2021, 48(10): 22-30 (in Chinese). [15] 曾红杰, 张 纲, 马立云, 等. 玻璃工业窑炉节能减排热化学再生设计[J]. 硅酸盐通报, 2022, 41(11): 3886-3892. ZENG H J, ZHANG G, MA L Y, et al. Thermo-chemical regeneration design for energy saving and emission reduction of glass industry furnace[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3886-3892 (in Chinese). [16] SAVCHENKO V I, ZIMIN Y S, NIKITIN A V, et al. Non-catalytic steam reforming of C1~C4 hydrocarbons[J]. Petroleum Chemistry, 2021, 61(7): 762-772. [17] SAVCHENKO V I, ZIMIN Y S, NIKITIN A V, et al. Utilization of CO2 in non-catalytic dry reforming of C1~C4 hydrocarbons[J]. Journal of CO2 Utilization, 2021, 47: 101490. |