[1] 刘 刚. 高强混凝土的断裂脆性及其增韧减脆措施试验研究[D]. 武汉: 武汉大学, 2004. LIU G. Brittleness of high strength concrete and measures studied of reducing the brittleness and increasing the toughness of concrete[D]. Wuhan: Wuhan University, 2004 (in Chinese). [2] 许 颖, 樊 悦, 王青原, 等. 基于DIC的聚丙烯纤维增强混凝土断裂过程分析[J]. 华中科技大学学报(自然科学版), 2024, 52(2): 103-111. XU Y, FAN Y, WANG Q Y, et al. Fracture process analysis of polypropylene fiber reinforced concrete based on DIC[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(2): 103-111 (in Chinese). [3] 庞建勇, 陈旭鹏. 高活性矿物掺合料混凝土力学性能试验[J]. 硅酸盐通报, 2020, 39(10): 3143-3151. PANG J Y, CHEN X P. Mechanical properties of high active mineral admixture concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3143-3151 (in Chinese). [4] 阎培渝, 张 波. 以不同形态硅灰配制的高强混凝土的力学性能[J]. 硅酸盐学报, 2016, 44(2): 196-201. YAN P Y, ZHANG B. Mechanical properties of high strength concrete prepared with different densities of silica fume[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 196-201 (in Chinese). [5] XIE J H, HUANG L, GUO Y C, et al. Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres[J]. Construction and Building Materials, 2018, 178: 612-623. [6] 蒋国平, 浣 石, 焦楚杰, 等. 基于SHPB试验的聚丙烯纤维增强混凝土动态力学性能研究[J]. 四川大学学报(工程科学版), 2009, 41(5): 82-86. JIANG G P, HUAN S, JIAO C J, et al. Dynamic performances of polypropylene fiber reinforced concrete based on SHPB experiment[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(5): 82-86 (in Chinese). [7] 胡金生, 周早生, 唐德高, 等. 聚丙烯纤维增强混凝土分离式Hopkinson压杆压缩试验研究[J]. 土木工程学报, 2004, 37(6): 12-15. HU J S, ZHOU Z S, TANG D G, et al. Study of SHPB compression experiment for polypropylene fiber reinforced concrete[J]. China Civil Engineering Journal, 2004, 37(6): 12-15 (in Chinese). [8] ZHANG H, LIU Y, SUN H, et al. Transient dynamic behavior of polypropylene fiber reinforced mortar under compressive impact loading[J]. Construction and Building Materials, 2016, 111: 30-42. [9] 梁宁慧, 杨 鹏, 刘新荣, 等. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 材料导报, 2018, 32(2): 288-294. LIANG N H, YANG P, LIU X R, et al. A study on dynamic compressive mechanical properties of multi-size polypropylene fiber concrete under high strain rate[J]. Materials Review, 2018, 32(2): 288-294 (in Chinese). [10] 李 智, 卢哲安, 陈 猛, 等. 混杂纤维混凝土冲击压缩性能SHPB试验研究[J]. 混凝土, 2011(4): 20-22. LI Z, LU Z A, CHEN M, et al. Impact compression experiment of hybrid fiber reinforced concrete by using SHPB technique[J]. Concrete, 2011(4): 20-22 (in Chinese). [11] WAQAR A, KHAN M B, AFZAL M T, et al. Investigating the synergistic effects of carbon fiber and silica fume on concrete strength and eco-efficiency[J]. Case Studies in Construction Materials, 2024, 20: e02967. [12] 庞建勇, 杨春春, 姚韦靖, 等. 硅灰改性聚丙烯纤维橡胶混凝土力学试验研究[J]. 安徽理工大学学报(自然科学版), 2022, 42(5): 24-30. PANG J Y, YANG C C, YAO W J, et al. Experimental study on mechanical properties of silica fume modified polypropylene fiber rubber concrete[J]. Journal of Anhui University of Science and Technology (Natural Science), 2022, 42(5): 24-30 (in Chinese). [13] 陈建国, 吴光军, 孙桂山, 等. 硅灰和聚丙烯纤维净浆界面剂对新老混凝土粘结力学性能的影响研究[J]. 新型建筑材料, 2018, 45(4): 52-55. CHEN J G, WU G J, SUN G S, et al. Effect study of silica fume and polymer fiber interface agent on bond mechanics behavior of new and old concrete[J]. New Building Materials, 2018, 45(4): 52-55 (in Chinese). [14] 詹 冬. 硅灰聚丙烯纤维混凝土力学性能及抗氯离子渗透性能的试验研究[D]. 银川: 宁夏大学, 2014. ZHAN D. Study on mechanical properties and chloride-penetration resistance of concrete with silicon powder and polypropylene fiber[D]. Yinchuan: Ningxia University, 2014 (in Chinese). [15] 朱一丁, 宋牧原, 苟慧艳, 等. 硅灰聚丙烯纤维改性自密实混凝土力学性能[J]. 中国科技论文, 2020, 15(12): 1401-1404. ZHU Y D, SONG M Y, GOU H Y, et al. Mechanical modification of self-compacting concrete by silica fume and polypropylene fiber[J]. China Sciencepaper, 2020, 15(12): 1401-1404 (in Chinese). [16] 王梦想, 汪海波, 宗 琦. 煤矿泥岩冲击动态力学特性与破裂破碎特征分析[J]. 振动与冲击, 2019, 38(4): 137-143. WANG M X, WANG H B, ZONG Q. Analysis dynamic mechanical characteristics and fracture breaking characteristics of coal mine mudstone[J]. Journal of Vibration and Shock, 2019, 38(4): 137-143 (in Chinese). [17] 宋 力, 胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005, 25(4): 368-373. SONG L, HU S S. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves, 2005, 25(4): 368-373 (in Chinese). [18] 张蓉蓉, 经来旺. SHPB试验中高低温作用后深部砂岩破碎程度与能量耗散关系分析[J]. 煤炭学报, 2018, 43(7): 1884-1892. ZHANG R R, JING L W. Analysis on the fragment and energy dissipation of deep sandstone after high/low temperature treatment in SHPB tests[J]. Journal of China Coal Society, 2018, 43(7): 1884-1892 (in Chinese). [19] 张 华, 郜余伟, 李 飞, 等. 高应变率下聚丙烯纤维混凝土动态力学性能和本构模型[J]. 中南大学学报(自然科学版), 2013, 44(8): 3464-3473. ZHANG H, GAO Y W, LI F, et al. Experimental study on dynamic properties and constitutive model of polypropylene fiber concrete under high strain rate[J]. Journal of Central South University (Science and Technology), 2013, 44(8): 3464-3473 (in Chinese). [20] WHITTLES D N, KINGMAN S, LOWNDES I, et al. Laboratory and numerical investigation into the characteristics of rock fragmentation[J]. Minerals Engineering, 2006, 19(14): 1418-1429. [21] 张德海, 邢纪波, 朱浮声, 等. 混凝土破坏过程的数值模拟[J]. 东北大学学报, 2004, 25(2): 175-178. ZHANG D H, XING J B, ZHU F S, et al. Study of failure process in concrete samples by using numerical simulation[J]. Journal of Northeastern University, 2004, 25(2): 175-178 (in Chinese). |