[1] 聂 松, 周 健, 徐名凤, 等. 低碳胶凝材料的研究进展[J]. 材料导报, 2024, 38(2): 60-68. NIE S, ZHOU J, XU M F, et al. Research progress of low-carbon binders[J]. Materials Reports, 2024, 38(2): 60-68 (in Chinese). [2] NIYAZUDDIN, UMESH B. Mechanical and durability properties of standard and high strength geopolymer concrete using particle packing theory[J]. Construction and Building Materials, 2023, 400: 132722. [3] SUN B, YE G, DE S G. A review: reaction mechanism and strength of slag and fly ash-based alkali-activated materials[J]. Construction and Building Materials, 2022, 326: 126843. [4] BANG J, CHOI J, HONG W T, et al. Influences of binder composition and carbonation curing condition on the compressive strength of alkali-activated cementitious materials: a review[J]. Journal of CO2 Utilization, 2023, 74: 102551. [5] ISMAIL I, BERNAL S A, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Composites, 2014, 45: 125-135. [6] DEB P S, NATH P, SARKER P K. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature[J]. Materials and Design, 2014, 62: 32-39. [7] SUN B B, SUN Y B, YE G, et al. A mix design methodology of slag and fly ash-based alkali-activated paste[J]. Cement and Concrete Composites, 2022, 126: 104368. [8] BERNAL S A, DE G R M, PEDRAZA A L, et al. Effect of binder content on the performance of alkali-activated slag concretes[J]. Cement and Concrete Research, 2011, 41(1): 1-8. [9] SHEKHOVTSOVA, KEARSLEY, KOVTUN. Effect of activator dosage, water-to-binder-solids ratio, temperature and duration of elevated temperature curing on the compressive strength of alkali-activated fly ash cement pastes: technical paper[J]. Journal of the South African Institution of Civil Engineering, 2014, 56(3): 44-52. [10] JIAO Z Z, WANG Y, ZHENG W Z, et al. Effect of dosage of alkaline activator on the properties of alkali-activated slag pastes[J]. Advances in Materials Science and Engineering, 2018, 2018(1): 8407380. [11] TAGHVAYI H, BEHFARNIA K, KHALILI M. The effect of alkali concentration and sodium silicate modulus on the properties of alkali-activated slag concrete[J]. Journal of Advanced Concrete Technology, 2018, 16(7): 293-305. [12] BEHFARNIA K, YAZELI H T, KHASRAGHI M B K. The effect of alkaline activator on workability and compressive strength of alkali-activated slag concrete[J]. AUT Journal of Civil Engineering, 2017, 1(1): 55-60. [13] 郑蕻陈, 刘 琳. 碱激发体系凝结时间和早期抗压强度变化规律[J]. 建筑材料学报, 2023, 26(11): 1214-1219. ZHENG H C, LIU L. Variation of setting time and early age compressive strength of alkali activated system[J]. Journal of Building Materials, 2023, 26(11): 1214-1219 (in Chinese). [14] 李 宁. 碱激发矿渣水泥混凝土的原料活性评价与组成设计[D]. 长沙: 湖南大学, 2020. LI N. Reactivity evaluation of raw materials and composition design for alkali-activated slag cements and concretes[D].Changsha: Hunan University, 2020 (in Chinese). [15] JIAO Z Z, WANG Y, ZHENG W, et al. Effect of dosage of sodium carbonate on the strength and drying shrinkage of sodium hydroxide based alkali-activated slag paste[J]. Construction and Building Materials, 2018, 179: 11-24 [16] BERNAL S A, PROVIS J L, MYERS R J, et al. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders[J]. Materials and Structures, 2015, 48(3): 517-529. [17] BEN T M A, PELAY U, RUSSEIL S, et al. A novel design to optimize the optical performances of parabolic trough collector using Taguchi, ANOVA and grey relational analysis methods[J]. Renewable Energy, 2023, 216: 119105. [18] FENG J, YIN G S, TUO H L, et al. Parameter optimization and regression analysis for multi-index of hybrid fiber-reinforced recycled coarse aggregate concrete using orthogonal experimental design[J]. Construction and Building Materials, 2021, 267: 121013. [19] FERNÁNDEZ J A, PALOMO A. Composition and microstructure of alkali activated fly ash binder: effect of the activator[J]. Cement and Concrete Research, 2005, 35(10): 1984-1992. [20] 邓振伟, 于 萍, 陈 玲. SPSS软件在正交试验设计、结果分析中的应用[J]. 电脑学习, 2009(5): 15-17. DENG Z W, YU P, CHEN L. Application of SPSS software in orthogonal design and result analysis[J]. Computer Study, 2009(5): 15-17 (in Chinese). [21] LI J, YANG F B, ZHANG H G, et al. Comparative analysis of different valve timing control methods for single-piston free piston expander-linear generator via an orthogonal experimental design[J]. Energy, 2020, 195: 116966. [22] YIN Y F, LI A G, WU D M, et al. Low-resistance optimization and secondary flow analysis of elbows via a combination of orthogonal experiment design and simple comparison design[J]. Building and Environment, 2023, 236(9): 110263. [23] ZHANG S Z, LI Z M, GHIASSI B, et al. Fracture properties and microstructure formation of hardened alkali-activated slag/fly ash pastes[J]. Cement and Concrete Research, 2021, 144(2000): 106447. [24] SAHA S M, RAJASEKARAN C. Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag[J]. Construction and Building Materials, 2017, 146: 615-620. [25] HAHA M B, LOTHENBACH B, LE SAOUT G L, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag. Part I: effect of MgO[J]. Cement and Concrete Research, 2011, 41(9): 955-963. [26] SRINIVASA A S, SWAMINATHAN K, YARAGAL S. Effect of slag and solid activator on flowability and compressive strength of fly ash based one-part geopolymer pastes[J]. Materials Today: Proceedings, 2023. |