[1] 吴 浩, 韩超南, 汤 昱. 我国磷石膏资源化利用研究进展[J]. 现代化工, 2023, 43(3): 18-21. WU H, HAN C N, TANG Y. Research progress on reutilization of phosphogypsum in China[J]. Modern Chemical Industry, 2023, 43(3): 18-21 (in Chinese). [2] 崔荣政, 白海丹, 高永峰, 等. 磷石膏综合利用现状及“十四五”发展趋势[J]. 无机盐工业, 2022, 54(4): 1-4. CUI R Z, BAI H D, GAO Y F, et al. Current situation of comprehensive utilization of phosphogypsum and its development trend of 14th Five-Year Plan[J]. Inorganic Chemicals Industry, 2022, 54(4): 1-4 (in Chinese). [3] FATIMA A, ABDELLATIF E, ABDELMAULA A, et al. Exploring the potential reuse of phosphogypsum: a waste or a resource?[J]. The Science of the Total Environment, 2024, 908: 168196. [4] 张 峻, 解维闵, 董雄波, 等. 磷石膏材料化综合利用研究进展[J]. 材料导报, 2023, 37(16): 163-174. ZHANG J, XIE W M, DONG X B, et al. Research progress on comprehensive utilization of phosphogypsum for materials: a review[J]. Materials Reports, 2023, 37(16): 163-174 (in Chinese). [5] 黄 赟. 磷石膏基水泥的开发研究[D]. 武汉: 武汉理工大学, 2010. HUANG Y. Development and research of phosphogypsum-based cement[D]. Wuhan: Wuhan University of Technology, 2010 (in Chinese). [6] LI H, XU F, LI B, et al. Investigation on mechanical properties of excess-sulfate phosphogypsum slag cement: from experiments to molecular dynamics simulation[J]. Construction and Building Materials, 2022, 315: 125685. [7] DING C, SUN T, SHUI Z H, et al. Physical properties, strength, and impurities stability of phosphogypsum-based cold-bonded aggregates[J]. Construction and Building Materials, 2022, 331: 127307. [8] SUN T, LI W M, XU F, et al. A new eco-friendly concrete made of high content phosphogypsum based aggregates and binder: mechanical properties and environmental benefits[J]. Journal of Cleaner Production, 2023, 400: 136555. [9] 刘路珍, 陈德玉, 何玉龙, 等. 磷石膏粒径及pH值对其复合胶凝材料的影响[J]. 非金属矿, 2015, 38(3): 5-8. LIU L Z, CHEN D Y, HE Y L, et al. Effect of particle size and pH value of phosphogypsum on composite binders based on phosphogypsum[J]. Non-Metallic Mines, 2015, 38(3): 5-8 (in Chinese). [10] COSTA R P, GOMES D M M H, DAVID R M E, et al. Effect of soluble phosphate, fluoride, and pH in Brazilian phosphogypsum used as setting retarder on Portland cement hydration[J]. Case Studies in Construction Materials, 2022, 17: e01413. [11] WANG Z Y, SHUI Z H, SUN T, et al. An eco-friendly phosphogypsum-based cementitious material: performance optimization and enhancing mechanisms[J]. Frontiers in Physics, 2022, 10: 892037. [12] 林宗寿, 黄 赟. 碱度对磷石膏基免煅烧水泥性能的影响[J]. 武汉理工大学学报, 2009, 31(4): 132-135. LIN Z S, HUANG Y. Effect of alkalinity on phosphogypsum-base non-calcined cement[J]. Journal of Wuhan University of Technology, 2009, 31(4): 132-135 (in Chinese). [13] 林宗寿, 黄 赟, 水中和, 等. 过硫磷石膏矿渣水泥与混凝土[M]. 武汉: 武汉理工大学出版社, 2015: 55. LIN Z S, HUANG Y, SHIU Z H, et al. Excess-sulfate phosphogypsum slag cement and concrete[M]. Wuhan: Wuhan University of Technology Press, 2015: 55 (in Chinese). [14] 彭家惠, 万汤玲, 张建新. 磷石膏中的有机物、共晶磷及其对性能的影响[J]. 建筑材料学报, 2003(3): 221-226. PENG J H, WAN T Z, TANG L, et al. Organic matters and P2O5 in crystal lattice and their influence on properties of phosphogypsum[J]. Journal of Building Materials, 2003(3): 221-226 (in Chinese). [15] ZHOU S T, LI X B, ZHOU Y N, et al. Effect of phosphorus on the properties of phosphogypsum-based cemented backfill[J]. Journal of Hazardous Materials, 2020, 399: 122993. [16] 王 强, 黎梦圆, 石梦晓. 水泥-钢渣-矿渣复合胶凝材料的水化特性[J]. 硅酸盐学报, 2014, 42(5): 629-634. WANG Q, LI M Y, SHI M X. Hydration properties of cement-steel slag- ground granulated blast furnace slag complex binder[J]. Journal of the Chinese Ceramic Society, 2014, 42(5): 629-634 (in Chinese). [17] 王紫嫣, 水中和, 孙 涛, 等. 高铁钢渣作碱激发剂对过硫磷石膏矿渣凝结硬化性能的影响[J]. 材料导报, 2023, 37(增刊1): 277-283. WANG Z Y, SHUI Z H, SUN T, et al. Steel slag with high iron phase activates excess-sulphate slag cement: effect on the coagulation and strength development[J]. Materials Reports, 2023, 37(supplement 1): 277-283 (in Chinese). [18] 殷小川, 黄 赟, 林宗寿. 提高磷石膏基水泥早期性能的研究[J]. 水泥, 2010(9): 1-5. YIN X C, HUANG Y, LIN Z S. How to improve early performance of phosphogypsum-base cement[J] Cement, 2010(9): 1-5 (in Chinese). [19] PROVIS J L, WINNEFELD F, JUENGER M C. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2011, 41(12): 1232-1243. [20] 黄哲元, 董发勤, 代群威, 等. 以废渣磷石膏为原料水热法制备硫酸钙晶须[J]. 环境工程学报, 2012, 6(1): 327-331. HUANG Z Y, DONG F Q, DAI Q W, et al. Preparation of calcium sulfate whisker using waste residue phosphogypsum by hydrothermal method[J]. Chinese Journal of Environmental Engineering, 2012, 6(1): 327-331 (in Chinese). [21] POTGIETER J H, POTGIETER S S T, POTGIETER R I. A comparison of the performance of various synthetic gypsums in plant trials during the manufacturing of OPC clinker[J]. Cement and Concrete Research, 2004, 34(12): 2245-2250. [22] LEE C W, KWON H B, JEON H P, et al. A new recycling material for removing phosphorus from water[J]. Journal of Cleaner Production, 2009, 17(7): 683-687. |