[1] FAN G Q, WANG M, DANG J, et al. A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag[J]. Waste Management, 2020, 120: 626-634. [2] 高 洋, 贵永亮, 宋春燕, 等. 高钛高炉渣综合利用现状及展望[J]. 矿产综合利用, 2019(1): 6-10. GAO Y, GUI Y L, SONG C Y, et al. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 6-10 (in Chinese). [3] CHU G R, WANG L, LIU W Z, et al. Indirect mineral carbonation of chlorinated tailing derived from Ti-bearing blast-furnace slag coupled with simultaneous dechlorination and recovery of multiple value-added products[J]. Greenhouse Gases: Science and Technology, 2019, 9(1): 52-66. [4] 惠翠萍. 提钛尾渣的综合利用[D]. 上海: 上海大学, 2019. HUI C P. The comprehensive utilization of extracted titanium tailing[D]. Shanghai: Shanghai University, 2019 (in Chinese). [5] 李有奇, 柯昌明, 甘 霖, 等. 基于攀钢含钛高炉渣提钛尾渣的精炼脱硫剂研究[J]. 钢铁钒钛, 2008, 29(4): 26-31. LI Y Q, KE C M, GAN L, et al. Development and application of refining desulfurizing agent based on Panzhihua iron and steel Co.Blast furnace slag extracted titanium[J]. Iron Steel Vanadium Titanium, 2008, 29(4): 26-31 (in Chinese). [6] 汪 朋, 韩兵强, 柯昌明, 等. 以高钛型高炉渣提钛后尾渣为结合剂的刚玉浇注料性能研究[J]. 钢铁钒钛, 2016, 37(4): 76-82. WANG P, HAN B Q, KE C M, et al. Study on the performance of corundum castables binded by high titanium blast furnace after extracting titanium[J]. Iron Steel Vanadium Titanium, 2016, 37(4): 76-82 (in Chinese). [7] 许星星, 段文涵, 陈啸洋, 等. 提钛尾渣对氯氧镁水泥耐水性的影响[J]. 硅酸盐通报, 2022, 41(5): 1742-1749. XU X X, DUAN W H, CHEN X Y, et al. Effects of titanium extraction tailings on water resistance of magnesium oxychloride cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1742-1749 (in Chinese). [8] 赵 矗, 曲军辉, 王 彬, 等. 硅酸钙板面板保温装饰一体板外保温系统锚固性能研究[J]. 建筑节能(中英文), 2021, 49(5): 95-98. ZHAO C, QU J H, WANG B, et al. Test research of anchorage structure in external thermal insulation systems based on insulated-decorative panel with calcium silicate boards[J]. Building Energy Efficiency, 2021, 49(5): 95-98 (in Chinese). [9] 孙亚萍. 硅酸钙板的制备及纤维增强[D]. 上海: 华东理工大学, 2015. SUN Y P. Synthesis and fiber-reinforced of calcium silicate board[D]. Shanghai: East China University of Science and Technology, 2015 (in Chinese). [10] 李连科, 李 辉. 免压蒸粉煤灰加压硅酸钙板[J]. 新型建筑材料, 2000, 27(9): 34-36. LI L K, LI H. Pressurized calcium silicate board with non-pressure steamed fly ash[J]. New Building Materials, 2000, 27(9): 34-36 (in Chinese). [11] 李海春. 我国硅酸钙板/纤维水泥板的生产现状及发展前景分析[J]. 江西建材, 2018(11): 3-4. LI H C. Analysis of production status and development prospect of calcium silicate board/fiber cement board in China[J]. Jiangxi Building Materials, 2018(11): 3-4 (in Chinese). [12] 梁兴荣. 利用磷渣、磷尾矿制备硅酸钙板的研究[D]. 武汉: 武汉工程大学, 2015. LIANG X R. Preparation of calcium silicate board by the phosphorus slag and phosphate tailings[D]. Wuhan: Wuhan Institute of Technology, 2015 (in Chinese). [13] 雒 锋, 金玉杰. 秸秆灰制备硅酸钙板的研究[J]. 新型建筑材料, 2020, 47(9): 35-39. LUO F, JIN Y J. Preparation of calcium silicate board from biomass straw ash[J]. New Building Materials, 2020, 47(9): 35-39 (in Chinese). [14] LI L, JIANG T, CHEN B J, et al. Recycling of Ti-extraction blast furnace slag: preparation of calcium silicate board with high slag content by steam pressure curing[J]. Process Safety and Environmental Protection, 2022, 158: 432-444. [15] NOCUŃ-WCZELIK W. Effect of some inorganic admixtures on the formation and properties of calcium silicate hydrates produced in hydrothermal conditions[J]. Cement and Concrete Research, 1997, 27(1): 83-92. [16] 耿 健, 丁庆军, 孙家瑛, 等. 3种不同类型水泥固化氯离子的特点[J]. 水泥, 2009(6): 20-23. GENG J, DING Q J, SUN J Y, et al. Binding chloride ion abilities of three different types of cement[J]. Cement, 2009(6): 20-23 (in Chinese). [17] LIU F, CAO J X, ZHU B. Effect of anion impurity on preparing xonotlite whiskers via hydrothermal synthesis[J]. Advanced Materials Research, 2011, 148/149: 1755-1758. [18] ZHAN J Y, YANG F H, LI W M, et al. Hydration characteristics and humidity control performance of calcium silicate board prepared from mine tailing and diatomite[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35(1): 147-154. [19] 汪泽华. 亚熔盐法粉煤灰提铝渣资源化利用应用基础研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019. WANG Z H. Applied basic research of the resource utilization of alumina-extracted residue from coal fly ash by sub-molten salt method[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2019 (in Chinese). [20] 张 彩. 硅藻土-高岭土-粉煤灰复合多孔保温材料性能研究[J]. 新型建筑材料, 2020, 47(7): 147-151. ZHANG C. Study on properties of diatomite-Gaolin-fly ash composite porous thermal insulation material[J]. New Building Materials, 2020, 47(7): 147-151 (in Chinese). [21] 舒 钊. 导热增强型定型脂肪酸复合相变材料在蓄热石膏板中的性能研究[D]. 上海: 东华大学, 2022. SHU Z. Study on the properties of heat conduction enhanced stability fatty acid composite phase change materials in thermal storage gypsum board[D]. Shanghai: Donghua University, 2022 (in Chinese). [22] 张丰琰, 李立鑫, 代晓光, 等. 地热井保温水泥导热系数影响因素研究[J]. 太阳能学报, 2023, 44(9): 493-502. ZHANG F Y, LI L X, DAI X G, et al. Research on influencing factors of thermal conductivity of thermal insulation cement for geothermal well[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 493-502 (in Chinese). [23] 郭成举. 氯盐对于水泥水化的促进作用[J]. 混凝土及加筋混凝土, 1984(5): 1-6. GUO C J. Promoting effect of chlorine salt on cement hydration[J]. Concrete, 1984(5): 1-6 (in Chinese). [24] MARINESCU M, BROUWERS J. Chloride binding related to hydration products Part I: Ordinary Portland Cement[C]//ANDRADE C, GULIKERS J. Advances in Modeling Concrete Service Life. Dordrecht: Springer, 2012: 125-131. [25] ZHOU Y, HOU D S, JIANG J Y, et al. Chloride ions transport and adsorption in the nano-pores of silicate calcium hydrate: experimental and molecular dynamics studies[J]. Construction and Building Materials, 2016, 126: 991-1001. [26] ZHU Q, JIANG L H, CHEN Y, et al. Effect of chloride salt type on chloride binding behavior of concrete[J]. Construction and Building Materials, 2012, 37: 512-517. |